ZrCuSiAs 型锰基化合物 ThMnSbN 中的化学压力效应*

肖宇森1)段清晨1)李佰卓2)柳绍华1)祝钦清3)谭树刚1)景强1)任之

³⁾ 梅玉雪^{1)†} 王操^{1)‡} 曹光旱²⁾

1) (山东理工大学,物理与光电工程学院,淄博 255000)

2) (浙江大学, 物理系, 杭州 310027)

3) (西湖大学,理学院,杭州 310024)

摘要

采用固相反应法合成了一种 ZrCuSiAs 型准二维层状锰基化合物 ThMnSbN。基于 X 射线粉末衍射的结构精修显示,该化合物属于 P4/nmm 空间群。其晶胞参数为 a=4.1731 Å, c=9.5160 Å。电输运测量显示,该化 合物电阻率随温度下降缓慢上升,且在 16 K 附近出现电阻率异常。与此 同时,该材料的磁化率在同一温度附近出现异常,显示出类似磁性相变 的行为。进一步的比热测量中没有观察到磁相变导致的比热异常。另外,低温下的比热分析显示,该材料的电子比热系数为 y=19.7 mJ/mol/K²,远高于其他同类锰基化合物。该结果与电输运测量中观察到的低电阻率行 为相符,暗示 ThMnSbN 中费米面附近存在可观的电子态密度。基于对一系列 ZrCuSiAs 型化合物晶体结构细节的比较,分析了含有萤石型 Th₂N₂ 层的系列化合物中导电层所受化学压力的不同作用形式。

关键词: 锰基化合物; 晶体结构; 物性测量; 化学压力效应 PACS: 61.50.-f, 71.20.Be, 72.20.-i, 75.50.Ee

基金:国家重点研究发展计划(批准号: 2017YFA0303002)和山东省自然科学基金 (批准号: ZR2019MA036, ZR2016AQ08)资助的课题.

- † 通讯作者 Pmail: meiyuxue@sdut.edu.cn
- ‡ 通讯作者. E-mail: wangcao@sdut.edu.cn 第一作者.E-mail: xiaoyusen09@163.com

1 引言

自从准二维 LaFeAsO 材料中的高温超导电性被发现以来,出于探索新型超导体的需要,一系列具有类似结构的化合物被合成出来^[1,2]。总结以往的发现不难看出,包含 LaFeAsO 在内的 ZrCuSiAs 型化合物的晶体结构具备很强的适应性。 晶格中几乎所有的晶体学位置都有若干替代元素可供选择。例如萤石型 La₂O₂ 层中的 La³⁺离子不仅可以采用其他稀土离子取代^[3-5],整个 La₂O₂ 层还能替换成无氧的*Ae*₂F₂ 层(*Ae* 表示碱土金属)或 Ca₂H₂ 层^[6-8]。此外,晶格中 Fe₂As₂ 层的替代结构也能统一写成 *T*₂*Pn*₂ 形式,其中 *T* 和 *Pn* 分别表示过渡金属元素及磷族元素。 在上述众多 ZrCuSiAs 型化合物中,*T*₂*Pn*₂ 层的选择决定了材料的大部分物理特性,包括反铁磁 (antiferromagnetic,简记为 AFM)金属 *Ln*CrAsO (*Ln* 表示镧系元素)^[9],AFM 绝缘体 *Ln*Mn*Pn*O^[10],高温超导母体 *Ln*FeAsO^[11],巡游铁磁金属 *Ln*Co*Pn*O^[12, 13],以及具有泡利顺磁行为的低温超导体 LaNi*Pn*O^[14, 15]。

在上述一系列 ZrCuSiA 型化合物中,基于 Mn₂Pn₂ 层的锰基化合物 LnMnPnO 属 AFM 型绝缘体,类似于铜氧化物高温超导体的母体特性,因此受到 广泛关注。根据现有的报道,LnMnPnO 系类化合物中 Mn²⁺离子的 3d 轨道处于 半满状态。强烈的洪特耦合导致其局域磁矩处于 3.2-4.2 μB之间^[10]。基于中子衍 射和磁性测量的分析显示 LnMnPnO 系类化合物的 AFM 转变温度(Néel 温度, 简记为 T_N)介于 230-360 K之间,显著高于同构的铁基化合物^[10]。在 T_N 以下, Mn 离子的磁矩倾向于沿着 *c* 轴方向排列^[16]。在部分 LnMnAsO 化合物中,受到 稀土离子低温磁有序的影响,Mn 离子的磁矩在更低的温度下重新定向到 *a-b* 面 内,暗示该体系中 3d 电子存在不稳定性^[17-19]。值得注意的是,有报道显示 LaMnPO 中的 Mn 离子 AFM 序在物理压力作用下被逐渐压制,但在可及的测量温区及物 理压力范围内没有发现超导电性^[20]。 最近,我们合成了一系列同属 ZrCuSiAs 结构的过渡金属磷族化合物 ThTPnN (T=Fe,Ni,Mn;Pn=P,As)^[21-23]。该体系可以看作萤石型 Th₂N₂ 层 与反萤石型 T₂Pn₂ 层沿 c 轴方向交替堆砌而成。物性测量显示,与含有 La₂O₂ 层 的对应化合物相比,ThTPnN 系列化合物都表现出反常的物理性质。其中 ThFeAsN 无需元素替代即可表现出 30 K 的超导电性^[21];ThNiAsN 相较 LaNiAsO 超导转变 温度及临界磁场都明显提高^[22,24];锰基化合物 ThMnPnN (Pn=P,As)中,尽管 中子衍射表明 AFM 序在室温时已经建立,但低温磁化率依然显示出类似顺磁 (PM) -AFM 磁相变的尖峰信号。与此同时,比热测量显示低温下费米面附近的 态密度明显大于零,显示出 Mn 离子 3d 轨道电子存在部分巡游的特性^[23]。总之, 上述包含萤石型 Th₂N₂ 的系列材料中总是表现出对 3d 电子局域性及 AFM 有序的 压制,同时增强了电子的巡游行,并促进超导电性的形成。我们将之归因于 Th₂N₂ 层引入的化学压力效应^[21-23]。

本文报道了一种 ZrCuSiAs 型锰基化合物 ThMnSbN。磁化率测量显示,该 材料中也存在低温下磁性相变的行为,且其转变温度较 ThMnAsN 和 ThMnPN 更 低。在 150 K-300 K 温度区间,材料的本征磁化率符合居里-外斯定律描述的顺磁 行为。电输运测量显示,材料的电阻率整体上随温度下降而缓慢上升。其中高温 段 *p-T* 曲线近似符合阿伦尼乌斯方程,但低温下显著偏离。我们尝试采用变程跳 跃(Variable range Hopping,简记为 VRH)模型分析材料的低温电阻率,但并不 奏效。比热测量显示该材料低温下出现较大的电子比热系数,暗示其导电机制可 能属于不良金属范畴。为了分析含有萤石型 Th₂N₂ 层的系列化合物中化学压力效 应的晶体结构起源,我们将该系列化合物中导电层的结构细节与含有其他载流子 库层的相应化合物进行对比,分析了化学压力效应在不同导电块层中的作用特点。

2 实验方法

ThMnSbN多晶样品采用固相反应法合成。使用的原料包括Th粉,Th₃N₄粉, Mn粉(99.9%)和Sb(99.99%)颗粒。其中金属Th及Th₃N₄的制备方法参见早先 的工作^[21]。为了检测金属Th中可能的氧杂质含量,我们采用热重分析方法对金属 Th进行标定。实验结果表明,Th粉中氧杂质摩尔含量小于0.5%。之后我们将Th, Th₃N₄,Mn和Sb按照元素计量比混合,经过研钵手动研磨,模具压制成直径8 mm 圆片。上述所有操作都在氩气保护手套箱中完成。之后将样品圆片放入氧化铝坩 埚,并封入真空石英管中。封管过程中管内气压小于5×10⁻⁴ Pa。密封完成的石英 管在空气中加热到1000℃并保持50小时。之后样品在手套箱中重新研磨、压片后 重复上述烧结过程。烧结得到的样品呈黑色,在干燥空气中保持稳定。

样品的X射线粉末衍射(XRD)采用PANalytical型X射线衍射仪(制造商 EMPYREAN)在室温下进行。X射线光源为Cu靶Kα1谱线。扫描过程采用步进扫 描方法,角度范围为20°-120°。衍射谱的精修拟合采用Fullprof软件进行^[25]。磁性 测量采用MPMS-5型磁性测量系统(制造商Quantum Design)。电阻率测量在Mini-CFM型无液氦低温测量系统上进行(制造商Cryogenic)。样品连接方式采用传统 的四电极法,测量仪表采用書时利(Keithley)2400型电流源和書时利2182型纳伏 表。比热测量采用热弛豫法,使用设备为PPMS-9型综合物性测量系统(制造商 Quantum Design)。

3 结构表征及物性测量结果

图1 ThMnSbN多晶样品的X射线衍射谱精修结果。

Fig.1. Rietveld refinement of X-ray powder diffraction data 图1显示了ThMnSbN多晶样品的X射线衍射谱及结构精修的拟合情况。从图 中可以看出,除来自主相的衍射峰以外,存在ThO2杂相导致的衍射峰。根据结构 精修的结果,ThO2杂相含量约为2.23%。表1列出了精修得到的详细参数。一般意 义上,当晶格中的某个离子被替换成半径更大的离子时,晶胞参数在各个维度上 都会变大。以ThMnPnN系列化合物为例,其中ThMnPN的晶胞参数为a=4.0301Å, c=8.6841 Å^[23]。当将其中的P³⁻离子分别替换成As³⁻和Sb³⁻时,晶胞参数分别增大为 *a*=4.0818Å, *c*=8.947Å(ThMnAsN)^[23]和*a*=4.1731Å, *c*=9.5160Å(ThMnSbN)。 但仔细分析上述数据就不难发现,这种同价元素替代导致的晶胞参数演变并不是 各向同性的。以ThMnPN的晶胞参数为基准,ThMnAsN和ThMnSbN的a轴分别增 长1.28%和3.55%, 而二者的c轴则分别增大了3.02%和9.58%。这表明导电层内同 价元素替代导致的晶格膨胀受到了Th2N2层的制约,导致沿a-b面方向的膨胀比例 小于c轴方向。因此推测ThMnSbN中存在更大的沿a-b面方向的化学压力。我将在 本文后面部分继续讨论这一话题。

- 表1 室温下 ThMnSbN 多晶 X 射线衍射谱的 Rietveld 精修结果。其中 H_{Sb}表示 Sb 原子与 Fe 平面的垂直间距。
- Table 1. Structural data for ThMnSbN at room-temperature, where H_{Sb} represents the distance from Sb atom to the Fe plane.

	Compounds				ThMnSbN	
	Space Group				P4/nmm	
	<i>a</i> (Å)				4.1731	
<i>c</i> (Å)					9.5160	
<i>R</i> _p (%)				5.71		
$R_{ m wp}$ (%)					7.48	
<i>R</i> _e (%)					6.16	
χ^2					1.475	
$H_{ m Sb}$ (Å)					1.7467	
Sb-Mn-Sb angle					100.13°	
atoms	Wyckoff	x	у	Z.	$B_{ m iso}$	Occupancy
Th	2c	0.25	0.25	0.11692	0.17287	1.0054
Mn	2b	0.75	0.25	0.5	0.82783	0.9946
Sb	2c	0.25	0.25	0.68356	0.22882	0.9921
Ν	2a	0.75	0.25	0	1.0(fixed)	1.0(fixed)

图2显示了ThMnSbN多晶样品的电阻率测量结果。材料在室温下的电阻率为 0.069 Ω·cm,小于绝大部分基于Mn2Sb2导电层的化合物。随着温度的下降,样品 的电阻率缓慢上升,呈现出类似半导体或不良金属的导电行为。冷却到低温段时, ThMnSbN电阻率出现类似肩膀形状的异常。之后随着温度的下降,电阻率继续上 升。为了更清晰的显示低温下电阻率的异常,我们以图2(a)的右轴为纵坐标绘 制了dp/dT随温度变化的曲线,可以看到电阻率的微分dp/dT在T*=16 K附近出现极 小值,标记了电阻率发生异常的确切温度。鉴于早先ThMnPN中存在类似的测量 结果,我们将这一电阻异常归因于3d轨道的局域磁矩相关的相变。

为了进一步理解ThMnSbN的电导机制,我们在图2(b)中尝试采用阿伦尼乌 斯方程 $\rho = \rho_0 \exp(E_a/k_BT)$ 拟合材料的电阻率,发现在220K以上温度区间, ρ -T曲线 近似符合阿伦尼乌斯关系。通过拟合得出的激活能为 $E_a=20.6$ meV,明显小于同样 基于Mn2Sb2层的EuMnSbF(110 meV)和BaMn2Sb2(160 meV)^[26,27]。我们注意 到,即便是Mn-Sb家族中 ρ -T曲线呈现金属行为的PrMnSbO(4f电子参与导电所致), 其室温电阻率也达到了1.1 Ω·cm,较ThMnSbN超出接近两个数量级。^[28, 29]在200 K以下的温度区间,材料电阻率明显低于阿伦尼乌斯关系的预测值。因此我们在 较低温度的区域尝试采用变程跳跃(variable-range hopping,简记为VRH)电导模 型拟合电阻率-温度曲线。如图2(c)所示,我们依据三维VRH机制ρ=ρ₀exp(T₀/T)^{1/4} 绘制了lnρ-T^{-1/4}关系图。图中可以看出,当温度下降到约5.6 K以下时,lnρ值与T^{-1/4} 之间呈现近似的线性关系。据此可以得到T₀=2.2×10⁻³ K。该T₀值比通常的半导体 至少小5个数量级,其对应的能量尺度(~10⁻⁷ eV)在一般凝聚态物理体系中可认 为忽略不计。这表明VRH机制也不能描述ThMnSbN中的低温电阻率。产生这一现 象的可能原因有二:其一是多晶样品中的杂相及晶界可能对电阻率测量产生影响, 其二是样品本征的低温电阻率受费米面附近态密度增大的影响而显著减小。我们 将在后面的比热测量中继续讨论这一点。

图2 (a) ThMnSbN样品的电阻率随温度变化曲线。其中右坐标表示电阻率 对温度微分后的结果, *T**表示电阻率异常的温度点。(b) 按照阿伦尼乌斯方程 绘制的ln*p*-*T*曲线。(c) 按照变程跳跃模型绘制的ln*p*-*T*^{-1/4}曲线。

axis shows the plot of $d\rho/dT$ versus *T*, where T^* marks the resistivity anomaly. (b) Arrhenius plot of the $\ln\rho$ -*T* data. (c) The plot of $\ln\rho$ versus $T^{-0.25}$ according to the three-dimensional Mott variable-range hopping (VRH) mechanism.

图3显示了ThMnSbN样品在恒定磁场(0.1 特斯拉)下的磁化率随温度变化关 系。300K附近,样品的摩尔磁化率达到约0.32 emu/mol,明显大于其同类化合物 PrMnSbO和EuMnSbF^[26, 28]。随着温度的下降,磁化率迅速上升并在200 K以下出 现类似饱和的行为。另外仔细观察可以发现,在整个温区中零场冷(ZFC)和场 冷(FC)曲线都不重合,显示磁化率中含有居里温度大于300K的铁磁信号贡献。 我们注意到,对于不同批次的样品,该处铁磁信号的强度存在差别,因此推测其 来源为某种含锰的杂相。假定杂相为铁磁性的MnSb(~95 emu/g),^[30]同时考虑到 300 K时样品的饱和磁化强度为M=1.16 emu/g(图3插图),则可以估算出样品中 MnSb杂相的质量百分比为~1.2%。这一杂相比例接近XRD的最小分辨能力,因此 无法被探测。当温度进一步下降到T*=16K时,ZFC磁化率出现一个尖峰,显示该 温度点发生磁性相变,与电阻率测量结果相符。但我们注意到,FC测量曲线在T* 处并没有出现尖峰,而是形成了一个类似肩膀型的异常。这一特性与ThMnPN和 ThMnAsN中典型的反铁磁相变信号形成鲜明对比。^[23]如果假定ThMnSbN与 ThMnAsN和ThMnPN拥有类似的磁性行为,则此处的FC曲线的异常可以理解为一 个反铁磁转变信号与杂质背景信号叠加的结果。另一种可能是该处异常可能来自 铁磁性相变。确切的低温磁结构需要中子衍射实验进行确认。无论如何,考虑到 Th⁴⁺离子形成稳定闭壳层而不产生明显的局域磁矩,该低温磁相变应归因于Mn离 子3d轨道电子贡献。事实上,类似结构的锰基化合物LaMnAsO_{1-x}H_x中通过氧位掺 氢引入电子型载流子的确可以压制母体中Mn离子的反铁磁序,并引发铁磁转变。 [31]但在同构的锰基母体化合物中,目前还没有铁磁相报道。[10]

图3 ThMnSbN样品摩尔磁化率随温度的变化曲线。测量中采用零场冷 (ZFC)和场冷(FC)两种测量方式,施加外磁场的磁感应强度为B=0.1 T。插 图显示样品在300 K时的磁化曲线。

Fig.3. Temperature dependence of magnetic susceptibility for ThMnSbN sample. Both zero-field cooling (ZFC) and field cooling (FC) were performed in a static field of B=0.1 T. The inset shows the magnetization curve of the sample at 300 K.

为了扣除高温段铁磁杂质背景对*γ-T*曲线的影响,我们采用定温扫场的方法 测量了一系列磁化曲线,通过线性拟合3×10⁴ Oe-5×10⁴ Oe之间M-H曲线的斜率计 算本征的顺磁磁化率γ=dM/dH。如图4所示,该样品300 K下的本征磁化率为 2.02×10⁻³ emu/mol, 与ThMnPN (1.66×10⁻³ emu/mol) 和ThMnAsN (2.69×10⁻³ emu/mol)^[23]非常接近。随着温度的下降,本征磁化率呈现类似局域磁矩的顺磁 行为。我们采用居里-外斯公式x=x0+C/(T-0)对300K以下的本征磁化率进行数值拟 合,发现当拟合温度下限为150 K时可以获得最高拟合优度R²=0.9994。此时得到 的拟合参数为χ₀=1.37×10³ emu/mol, C=0.147 emu·K/mol, θ=67 K。由此可以得出, 参与顺磁行为的有效磁矩为1.08 μ_B/f.u.。该有效磁矩显著小于同类材料PrMnSbO 中的拟合结果(3.47 µ_B/f.u.)^[19,23]。与同体系的ThMnPN(1.36 µ_B/f.u.)和ThMnAsN (1.99 µ_B/f.u.)相比也明显更小^[23]。我们注意到,先前的中子衍射实验显示, ThMnPN和ThMnAsN中300 K温度的Mn离子有序磁矩分别为2.69 µB(ThMnPN) 和2.30 µB(ThMnAsN)^[23]。这些现象暗示在室温下ThMnPN和ThMnAsN中仅有部 分局域3d电子参与了反铁磁有序,而随后的居里-外斯行为则可以看作另一部分 局域3d的电子的贡献。考虑到ThMnSbN与ThMnAsN及ThMnPN的化学及结构相 似性,我们推测ThMnSbN也可能存在类似的行为。事实上,这种3d电子分步有序 化的现象在空穴掺杂的 $Nd_{1-x}Sr_xMnAsO$ 中也曾经观测到。^[32]不同的是在 $Nd_{1-x}Sr_xMnAsO$ 中也曾经观测到。 _xSr_xMnAsO中Mn离子的第二次有序化被认为是Nd离子磁有序诱导的结果。有趣的

是,这种现象在NdMnAsO母体及电子掺杂的NdMnAsO_{1-x}F_x中则不存在。^[16, 17, 33] 此外,居里-外斯拟合中得到外斯常数θ为正,说明高温段的顺磁态磁矩间存在铁 磁关联,与ThMnAsN及ThMnPN结果类似。中子衍射显示ThMnAsN与ThMnPN中 的Mn离子在300 K以下都保持c方向铁磁关联,形成C型反铁磁结构。^[23]假定 ThMnSbN中Mn离子磁结构与之类似,则此处θ值大于零可以解释为3d电子中处于 局域顺磁状态的部分在降温过程中倾向于先建立c方向的铁磁关联。这种行为与 准一维体系Ca₃Co₂O₆及Ca₃CoRhO₆中的部分无序的反铁磁态(Partially Disordered Antiferromagnetism,简记为PDA)的建立过程类似。^[34-36]我们将在比热测量部分 继续讨论这一问题。

图4 扣除杂相铁磁信号背景后的磁化率随温度变化规律。其中红色实线为 采用居里-外斯公式χ=χ0+C/(T-θ)拟合150 K-300 K之间磁化率的结果。插图显示 了样品在不同温度下测量得到的磁化曲线。通过线性拟合3×10⁴ Oe-5×10⁴ Oe之 间的磁化强度得到了本征磁化率χ=dM/dH。

Fig. 4. The magnetic susceptibility ($\chi=dM/dH$) after deducting the ferromagnetic background of the impurities by linearly fitting the *M-H* curve between 3×10^4 Oe and 5×10^4 Oe. The solid red line fits the data between 150 K and 300 K using the Curie-Weiss relation $\chi=\chi_0+C/(T-\theta)$. The inset shows the original magnetization curve.

图5显示了ThMnSbN样品的比热测量结果。其300 K的比热接近杜隆-珀替定 律预测的3NR。随着温度降低,比热单调下降,但在T*温度附近没有观察到相应 的比热异常。我们注意到这种磁相变无法被比热探测到的现象同样存在于处于 PDA状态的准一维材料Ca₃CoRhO₃中。该体系温度降低到T_N附近时,其中部分铁 磁自旋链发生相干,形成链间反铁磁有序,而另一部分自旋链则处于净磁矩为零

的非相干状态。^[36]这一行为导致原本集中在 T_N 附近的熵变弥散到较宽的温度区间, 从而使比热测量无法探测相变信号。[37]与此同时,这种渐进磁有序效应并不会妨 碍磁化率测量中相变异常的探测。^[36, 37]这种行为与ThMnPnN体系非常类似。^[23] 在更低的温度下(低于 T^* ,同时远低于晶体材料的德拜温度),材料的比热一般可 以表示为C=vT+BT³,其中v和B分别表示电子和声子部分的比热系数。为了描述低 温比热,我们在图5(c)中绘制了 $C/T-T^2$ 关系图。从图中可以看出,当温度降低到 10K附近时, C/T-T²关系图呈现较为明显的线性行为。但在6K以下,测量数据偏 离了上述线性关系, 推测是由于低温下的肖特基异常引起的。为了避开肖特基异 常的影响,我们采用上述比热公式拟合了6 K-15 K之间的比热数据,得到的参数 值为 $\gamma=19.7 \text{ mJ/mol/K}^2$ 和 $\beta=0.437 \text{ mJ/mol/K}^4$ 。在绝大部分同类结构的锰基化合物中, 由于Mn²⁺离子的3d轨道处于半满状态,洪特耦合作用导致3d电子处于局域状态, 从而使费米面附近的态密度NFF很小。考虑到NFF与y之间的关系可以表示为 $y=\pi^2 N_{\rm A}k_{\rm B}^2 N_{\rm EF}/3$,因此比热测量一般只能观测到很小的电子比热系数(例如 NdMnAsO中, y=1.2 mJ/mol/K²)。^[17]ThMnSbN中异常增大的电子比热系数表明材 料的NEF明显大于其他同构的锰基化合物。在先前报道的ThMnPN和ThMnAsN中, 电子比特系数也分别达到了8.11 mJ/mol/K²和9.62 mJ/mol/K²。由此可见,这种异 常增大的电子比热系数成为基于Th2N2层的锰基化合物的共同特征。此外还应注 意到,电子化热系数,与材料磁化率中的泡利顺磁贡献,如可以通过下列两个公式联系起来: $\gamma = \pi^2 N_{\rm A} k_{\rm B}^2 N_{\rm EF}/3$, $\gamma_{\rm P} = \mu_{\rm B}^2 N_{\rm A} N_{\rm EF}$ 。因此,依据比热测量得到的 γ 值可以推出自由电子 在磁化率测量中的贡献xp。表2列出了ThMnPnN系列样品的y值及推算出的xp,并与各自体 系中居里-外斯拟合得到的与温度无关的磁化率项χω进行了对比。尽管通过比热计算出的χρ都 小于\chi0,但二者基本处在同一数量级,且xP在ThMnPnN系列化合物中的演变规律与x0基本一 致。次与次的差异的产生原因可能是磁化率测量更容易受到某些杂相的干扰。

斯拟合所得磁化率中的温度无关项xo的对比。

Table 2 Comparison of the Sommerfeld coefficient γ , Pauli paramagnetic susceptibility χ_P and the temperature-independent term χ_0 in the magnetic susceptibility obtained by the Curie-Weiss fitting in ThMn*Pn*N compounds.

图5 (a) ThMnAsN样品的比热随温度的变化曲线。(b) ThMnAsN的比热-温度曲线在30 K以下部分的放大图,其中右纵轴显示了比热对温度的微分随温 度的变化曲线。(c) C/T-T²曲线,其中红色的直线为参照。

Fig.5. (a) The data of specific heat for the ThMnSbN sample. (b) An enlarged view of the *C-T* curve below 30 K, in which the right vertical axis shows the differential of specific heat as a function of temperature. (c) $C/T-T^2$ curve, where the red straight line fits the data in the range of 6 K<T<15 K.

4 讨论

到目前为止,已知的包含Th2N2层的ZrCuSiAs型化合物包括ThFeAsN^[21], ThMnPnN(Pn=P, As, Sb)^[23]以及ThNiAsN^[22]。我们注意到,上述所有化合物在 其各自的家族体系(具有相同导电层)中都体现出较为反常的物理特性。例如, ThFeAsN无需掺杂即可达到30 K超导,且其中不存在LnFeAsO体系常见的AFM基 态: ThMnPnN中异常增加的费米面附近态密度: ThNiAsN相对于LaNiAsO显著提 高的超导T。及上临界磁场等。上述实验结果表明,Th2N2层的引入对材料的物性产 生了系统性影响。为了进一步理清Th2N2层在不同体系中对物性产生影响的机制, 我们选取结构类似的La2O2层和Eu2F2层作为参照,对比了一系列ZrCuSiAs型化合 物晶体结构的相关参数。图6(a)和(b)显示了以Eu₂F₂、La₂O₂、Th₂N₂层为载流 子库层的锰基磷族化合物晶胞参数的变化趋势。为了对比方便,我们将晶胞参数 按照各自体系中晶胞最小的Mn-P化合物进行归关化。从图中可以看出,随着晶格 中Pn位离子半径的增加(P \rightarrow As \rightarrow Sb), 晶胞的a轴和c轴都单调增加。但仔细对比 后不难发现,不同的载流子库层显著影响晶胞的择优膨胀方向。对于含有Th2N2层 的化合物,晶胞沿a-b面膨胀的比例显著小于c轴方向。而对含有Eu2F2层的化合物, 其膨胀趋势则恰恰相反。这种由载流子库层决定的晶胞演化各向异性与载流子库 层内的阴阳离子之间的库伦作用强度有关。较强的库伦作用(较大的离子电量) 显然会阻碍晶胞沿a-b面方向的膨胀,相当于对导电层施加了更多的沿a-b面方向 的化学压力。于此同时,对比(a)、(b)两图可以看出,当体系沿a-b面方向的膨 胀受到限制时,其c轴方向随Pn离子替换的晶格膨胀将更加明显。

图6(a)、(b)含有不同载流子库层的ZrCuSiAs型锰基化合物归一化晶胞参数。(c)不同导电层的ZrCuSiAs型系列化合物中Pn原子的高度(H_{Pn})与晶胞a 轴的关系。其中V_{layer}表示一个惯用晶胞中导电层所占据的体积。^[20, 21, 23, 26, 28, 38-43]

Fig. 6 (a) and (b) show the normalized cell parameters of ZrCuSiAs-type manganese-based compounds with different conducting layers. (c) The relationship between the height of the Pn atom (H_{Pn}) and the *a*-axis for ZrCuSiAs-type compounds, where V_{layer} represents the volume of the conducting layer in a conventional cell. ^[20, 21, 23, 26, 28, 38-43]

为了进一步分析晶格中导电层在不同结构中的形变趋势,我们在图6(c)中总结了一系列ZrCuSiAs型化合物中Pn离子到过渡金属平面的垂直间距(H_{Pn})与晶胞a轴长度之间的关系。其中半透明粗实线连接了拥有同一种载流子库层的不

同化合物, 虚线表示晶胞中导电层所占体积 ($V_{laver}=2a^2 \cdot H_{Pn}$) 保持不变时, H_{Pn} 与 a之间的函数关系。从图中可以看出以下特点:(1)对于所有的导电层, H_{Pn} 的减 小(c方向压力增大)都伴随着a轴的增大,呈现出类似宏观材料中的泊松效应行 为。不同的是随着 H_{Pn} 的减小,导电层所占体积逐渐增大,尤以 Mn_2Sb_2 层最为明 显。这显示化学压力在改变导电层内键角的同时显著影响了d-p轨道杂化情况,从 总体上拉长了Mn-Sb之间键长。(2)在Mn-Sb系列化合物中,ThMnSbN的a轴长度 接近NdMnSbO。但在Mn-As系列中ThMnAsN的a轴长度相对增大 并开始向 CeMnAsO靠拢。这一趋势在Mn-P系列化合物中则更加显著(尽管CeMnPO的数据 缺失)。这表明Th₂N₂层对不同的Mn₂Pn₂导电层施加的沿a-b面方向的应力作用强 度不同。当a轴长度较大时,Th₂N₂层倾向于对Mn₂Sb₂导电层施加更多a-b面内的压 力。这种趋势与EuMnPnF系列化合物刚好相反、显示出Th2N2层在a-b面方向更加 缺乏"弹性"。(3)对含有同种稀土元素的LnFeAsO和LnMnPO可以看出,前者的 晶胞a轴普遍小于后者,导致图6(c)中代表同种稀土元素的半透明粗实线呈现近 似的线性。有趣的是上述规律并不适用于含有Th2N2层的系列化合物,尤其是 ThFeAsN和ThMnPN的a轴长度几乎相等。如果将Th2N2层看作一种缺乏"弹性" 的载流子库层,这可能暗示ThFeAsN中的Fe2As2层受到了与a-b面平行方向的张力 作用,而早先依据晶体结构判断的c方向化学压力可能是这一面内张力的附带效 应。

5 结 论

综上所述,我们合成了一种 ZrCuSiAs 型锰基化合物 ThMnSbN,并分析了该 化合物的晶体结构。基于对其电阻率、磁化率、等温磁化曲线及比热等物性的表 征,我们发现与其他基于 Mn₂Sb₂ 层的化合物相比,ThMnSbN 呈现出明显的物性 差异,包括低温下 3d 电子的磁性相变,以及显著增大的电导率和电子比热系数。 这些反常行为与我们早先合成的 ThMnPN 及 ThMnAsN 类似,表明该体系中的 3d 轨道电子比其他同构的锰基化合物具有更强的不稳定性,显示了作为载流子库的 Th₂N₂ 层对导电层产生的独特影响。通过对比一系列相关化合物中导电层晶体结 构的细节参数,我们推测 Th₂N₂ 层在 ThMn*Pn*N 和 ThFeAsN 中可能产生了不同的 作用效果,暗示 Th₂N₂ 层作为一种独特的载流子库在材料探索中的作用。该体系 值得从理论和实验上进行更深入的研究,以最终理解相关体系中化学压力的作用 原理。

参考文献

Uncategorized References

- [1] Tegel M, Schellenberg I, Pöttgen R, Johrendt D 2008 Z. Naturforsch. 63b 1135
- [2] Ozawa T C, Kauzlarich S M 2008 Sci. Technol. Adv. Mater. 9 033003
- [3] Chen X H, Wu T, Wu G, Liu R H, Chen H, Fang D F 2008 Nature 453 761
- [4] Wang C, Li L, Chi S, Zhu Z, Ren Z, Li Y, Wang Y, Lin X, Luo Y, Jiang S, Xu X, Cao G, Xu Z a 2008 Europhys. Lett. 83 67006
- [5] Ren Z-A, Che G-C, Dong X-L, Yang J, Lu W, Yi W, Shen X-L, Li Z-C, Sun L-L, Zhou F, Zhao Z-X 2008 Europhys. Lett. 83 17002
- [6] Tegel M, Johansson S, Weiß V, Schellenberg I, Hermes W, Pöttgen R, Johrendt D 2008 Europhys. Lett. 84 67007
- [7] Cheng P, Shen B, Mu G, Zhu X, Han F, Zeng B, Wen H-H 2009 Europhys. Lett. 85 67003
- [8] Muraba Y, Matsuishi S, Hosono H 2014 J. Phys. Soc. Jpn. 83 033705
- [9] Park S W, Mizoguchi H, Kodama K, Shamoto S, Otomo T, Matsuishi S, Kamiya T, Hosono H 2013 Inorg. Chem. 52 13363
- [10] McGuire M A, Garlea V O 2016 Phys. Rev. B 93 054404
- [11] Kamihara Y, Watanabe T, Hirano M, Hosono H 2008 J. Am. Chem. Soc. 130 3296
- [12] Yanagi H, Kawamura R, Kamiya T, Kamihara Y, Hirano M, Nakamura T, Osawa H, Hosono H 2008 Phys. Rev. B 77 224431
- [13] Ohta H, Yoshimura K 2009 Phys. Rev. B 80 184409
- [14] Watanabe T, Yanagi H, Kamiya T, Kamihara Y, Hiramatsu H, Hirano M, Hosono H 2007 *Inorg. Chem.* 46 7719
- [15] Watanabe T, Yanagi H, Kamihara Y, Kamiya T, Hirano M, Hosono H 2008 J. Solid State Chem.181 2117
- [16] Emery N, Wildman E J, Skakle J M S, McLaughlin A C, Smith R I, Fitch A N 2011 Phys. Rev. B 83 144429
- [17] Marcinkova A, Hansen T C, Curfs C, Margadonna S, Bos J W G 2010 Phys. Rev. B 82 174438
- [18] Corkett A J, Free D G, Clarke S J 2015 Inorg. Chem. 54 1178
- Kimber S A J, Hill A H, Zhang Y-Z, Jeschke H O, Valentí R, Ritter C, Schellenberg I, Hermes
 W, Pöttgen R, Argyriou D N 2010 *Phys. Rev. B* 82 100412

- [20] Simonson J W, Yin Z P, Pezzoli M, Guo J, Liu J, Post K, Efimenko A, Hollmann N, Hu Z, Lin H J, Chen C T, Marques C, Leyva V, Smith G, Lynn J W, Sun L L, Kotliar G, Basov D N, Tjeng L H, Aronson M C 2012 Proc. Natl. Acad. Sci. U. S. A. 109 E1815
- [21] Wang C, Wang Z C, Mei Y X, Li Y K, Li L, Tang Z T, Liu Y, Zhang P, Zhai H F, Xu Z A, Cao G H 2016 J. Am. Chem. Soc. 138 2170
- [22] Wang Z-C, Shao Y-T, Wang C, Wang Z, Xu Z-A, Cao G-H 2017 Europhys. Lett. 118 57004
- [23] Zhang F, Li B, Ren Q, Mao H, Xia Y, Hu B, Liu Z, Wang Z, Shao Y, Feng Z, Tan S, Sun Y, Ren Z, Jing Q, Liu B, Luo H, Ma J, Mei Y, Wang C, Cao G H 2020 *Inorg. Chem.* 59 2937
- [24] Zheng L, Chen G, Jing D, Gang L, Luo J 2008 Phys. Rev. B 78 060504
- [25] Rodríguez-Carvajal J 1993 Phys. B 192 55
- [26] Plokhikh I V, Charkin D O, Verchenko V Y, Kuznetsov A N, Tsirlin A A, Kazakov S M, Shevelkov A V 2018 J. Solid State Chem. 258 682
- [27] Sangeetha N S, Smetana V, Mudring A V, Johnston D C 2018 Phys. Rev. B 97 014402
- [28] Kimber S, Hill A H, Zhang Y Z, Jeschke H O, Valenti R, Ritter C, Schellenberg I, Hermes W, Poettgen R, Argyriou D N 2010 Phys. Rev. B 82 100412
- [29] Gurgul J, Rinke M T, Schellenberg I, Pöttgen R 2013 Solid State Sci. 17 122
- [30] Okita T, Makino Y 1968 J. Phys. Soc. Jpn. 25 120
- [31] Hanna T, Matsuishi S, Kodama K, Otomo T, Shamoto S-i, Hosono H 2013 Phys. Rev. B 87 020401
- [32] Wildman E J, Emery N, McLaughlin A C 2014 Phys. Rev. B 90 224413
- [33] Wildman E J, Skakle J M S, Emery N, McLaughlin A C 2012 J. Am. Chem. Soc. 134 8766
- [34] Kageyama H, Yoshimura K, Kosuge K, Mitamura H, Goto T 1997 J. Phys. Soc. Jpn. 66 1607
- [35] Niitaka S, Kageyama H, Yoshimura K, Kosuge K, Kawano S, Aso N, Mitsuda A, Mitamura H, Goto T 2001 J. Phys. Soc. Jpn. 70 1222
- [36] Niitaka S, Yoshimura K, Kosuge K, Nishi M, Kakurai K 2001 Phys. Rev. Lett. 87 177202
- [37] Hardy V, Lees M R, Maignan A, H bert S, Flahaut D, Martin C, Paul D M 2003 J. Phys.: Condens. Matter 15 5737
- [38] de la Cruz C, Huang Q, Lynn J W, Li J, Ratcliff W, 2nd, Zarestky J L, Mook H A, Chen G F, Luo J L, Wang N L, Dai P 2008 Nature 453 899
- [39] N. D. Zhigadlo, S. Katrych, S. Weyeneth, R. Puzniak P M, Z. Bukowski, J. Karpinski, H. Keller, Batlogg a B 2010 Phys. Rev. B 82 064517
- [40] Nitsche F, Jesche A, Hieckmann E, Doert T, Ruck M 2010 Phys. Rev. B 82 134514
- [41] Nientiedt A T, Jeitschko W, Pollmeier P G, Brylak M 1997 Z. Naturforsch. B 52 560
- [42] Muir S, Subramanian M A 2012 Prog. Solid State Chem. 40 41
- [43] Schellenberg I, Nilges T, Pöttgen R 2008 Z. Naturforsch. B 63 834

Chemical Pressure Effects in ZrCuSiAs-type Manganese-based Compound ThMnSbN^{*}

Xiao Yusen¹⁾ Duan Qingchen¹⁾ Li Baizhuo²⁾ Liu Shaohua¹⁾ Zhu Qinqing³⁾ Tan Shugang¹⁾ Jing

Qiang¹⁾ Ren Zhi³⁾ Mei Yuxue^{1)†} Wang Cao^{1)‡} Cao Guanghan²⁾

1) (Shool of Physics and Optoelectronics, Shandong University of Technology, Zibo 255000, China)

2) (Department of Physics, Zhejiang University, Hangzhou 310027, China)

3) (School of Science, Westlake University, Hangzhou 310024, China)

Abstract

A quasi-two-dimensional manganese-based compound ThMnSbN was synthesized by the solid-state reaction method. Structural refinement based on X-ray powder diffraction shows that the compound belongs to the P4/nmm space group. The lattice parameters are a=4.1731 Å, c=9.5160 Å. Electrical transport measurements show that the resistivity of the compound is one of the lowest among the Mn-based family. Upon cooling, the resistivity rises slowly and shows a shoulder-like anomaly at 16 K. Also, the magnetic susceptibility exhibits an anomaly at the very same temperature. Though the transitioninduced anomaly is absent on the specific heat data, the electron specific heat coefficient of $\gamma = 19.7 \text{ mJ/mol/K}^2$ is derived by fitting the low-temperature C-T curve. This γ value is much higher than those of the isostructural manganese-based compounds. Thus, the specific heat is consistent with the low resistivity and suggests a considerable electronic density of states near the Fermi surface for ThMnSbN. By comparing the crystal structure for a group of ZrCuSiAs-type compounds, various chemical pressure effects of the fluorite-type Th₂N₂ layer on the conducting layer in different compounds are discussed.

Keywords: Mn-based Compounds; Crystal Structure; Physical Property Measurement; Chemical

Pressure Effects.

* Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0303002) and the Natural Science Foundation of Shandong Province (Grant Nos. ZR2019MA036, and ZR2016AQ08).