波长调制-直接吸收光谱(WM-DAS)在线监测大气 CO 浓度*

王振 杜艳君 丁艳军 李政 彭志敏

清华大学能源与动力工程系

电力系统与发电设备控制与仿真国家重点实验室,北京 100084

摘要

波长调制-直接吸收光谱(WM-DAS)同时具有直接吸收光谱(DAS) 可测量吸收率函数和波长调制光谱(WMS)高信噪比的优点,本文首先 采用 WM-DAS 光谱,在 50 cm 光程和室温低压下,CO 分子近红外 4300.7 cm⁻¹ 谱线吸收率检测限低至 4×10⁻⁷ (200 s);然后结合 120 m 长光程 Herriott 池,在室温大气压下,吸收率函数拟合残差标准差达到 5.1×10⁻⁵ (1 s)。最后利用长光程 WM-DAS 测量系统,对不同浓度(0.44~9.6 ppm) CO 进行了动态测量,并将其与腔衰荡光谱(CRDS)进行比较;实验结 果表明:本文采用的长光程 WM-DAS 与 CRDS 方法测量结果相同,其中 长光程 WM-DAS 系统 CO 浓度检测限低至 0.9 ppb (200 s),系统简单且 测量速度远快于 CRDS。与此同时,利用建立的长光程 WM-DAS 测量系 统连续监测 1 个月时间内大气痕量 CO 浓度及其变化趋势,其测量结果 与中国环境监测总站高度一致。

关键词: 波长调制-直接吸收光谱、腔衰荡光谱、吸收率函数、CO 浓度 监测

PACS: 42.62.Fi, 33.20.Ea, 42.55.Px

基金: 国家重点研发项目(批准号: 2019YFB2006002)和国家自然科学基金(批准号: 11972213, 51906120)资助的课题

* 通讯作者.E-mail: apspect@tsinghua.edu.cn 第一作者.E-mail: wangzhen2020@mail.tsinghua.edu.cn

1 引 言

一氧化碳(CO)是大气观测的重要参数之一,与空气质量有关,在对流层 化学中起着重要作用,是生物质和化石燃料燃烧产生的CO₂、CH₄和H₂排放的重 要示踪剂^[1,2]。大气中CO常用监测方法如气相色谱(GC)^[3],利用色谱柱从大气 中分离出CO再采用火焰电离或电子俘获探测器进行测量,检测限低至~0.1 ppb; 傅立叶变换红外吸收光谱(FTIR)常利用 CO 分子 2150-2320 cm⁻¹特征吸收光谱 并结合多次反射池,检测限低至~0.2 ppb^[4]。

上述测量方法对预处理要求较高,系统复杂且响应速度慢。可调谐半导体 激光吸收光谱(TDLAS)具有波长选择性强、测量速度快、免标定等优点^[5,6]。 其中,直接吸收光谱(DAS)原理简单,可测量气体吸收率函数,广泛应用于环 境监测和工业过程气体分析等领域^[7,8]。然而,激光强度波动、光电探测器暗噪声、 1/f噪声等限制了 DAS 测量灵敏度进一步提高^[9,10],在大气痕量 CO 浓度测量中, 目前多选择中红外强吸收谱线以提升测量灵敏度,如采用 4.57 um 的量子级联激 光器(QCL)并结合多次反射池, CO 检测限可至~1 ppb^[14-13]; 或者采用高频调 制的波长调制光谱(WMS)方法提升测量信噪比,通过提取高信噪比的 2 次谐 波信号,并可结合光声光谱(PAS)^[14]或光热光谱^[15], 实现低至~1 ppb 的检测限 ^[16-19]; 以及采用等效光程 km 级的积分腔输出光谱 (ICOS)^[20]实现 ppb~ppt 级的 CO 检测。由于中红外 QCL 多为自由空间光输出且成本较高,因而也有科研工作 者采用易于光纤耦合的近红外激光器进行 CO 测量,如采用垂直腔面发射激光器 (VCSEL)^[21-23],利用 2.3 um 附近的 CO 特征吸收谱线,结合 WMS 方法,在较 短光程(40 cm)时检测限可达到~0.4 ppm;以及采用 2.3 μm 分布反馈(DFB) 半导体激光器结合右英增强光声光谱(QEPAS),最小可探测 CO 浓度达到 43.3 ppm^[24]: 或采用腔增强吸收光谱方法,在常压和有效光程 1545.6 cm 条件下最小 可探测 CO 浓度~34 ppm^[25];或采用近红外 1.57 μm 的 DFB 半导体激光器,利用 腔衰荡光谱(CRDS)方法实现大气 CO 监测^[2,26]。上述 WMS 方法通常需标定, 而 PAS、ICOS、CRDS 操作及维护较复杂且成本较高。近年来, 彭等^[27]提出了一 种基于正弦调制和频谱分析的波长调制-直接吸收光谱(WM-DAS)方法,该方 法将谐波分析引入 DAS 中,同时具有 WMS 高信噪比和 DAS 免标定的优点,吸 收率函数拟合残差标准差低至 1×10^{-5[28]}。

因此,与上述 WMS、光声、腔增强、腔衰荡光谱以及采用中红外 QCL 测量不同,本文采用免标定、高信噪比的 WM-DAS 方法,结合 Herriott 多通池实现了大气中痕量 CO 浓度连续在线监测。首先,采用该方法在常温低压及光程 0.5 m条件下,连续静态测量 CO 分子 4300.7 cm⁻¹ 谱线的吸收率函数,得到最小可探测吸收率~4×10⁻⁷,验证该方法的高信噪比;然后,采用 WM-DAS 方法结合 120 m的 Herriott 池,对室温常压下 4300.7 cm⁻¹ 谱线吸收率函数进行静态测量,并对不同浓度 CO 进行动态测量,与高精度的 CRDS 测量结果进行对比。最后,利用长光程 WM-DAS 测量系统连续监测大气 CO 约一个月时间,并与中国环境监测总站测量结果进行比较分析。

2 实验系统

图1 (a) 为WM-DAS^[27,28]系统,包括0.5 m的单程池和Herriott^[29]型多通池, 0.5 m单程池两端采用双楔角GaF2窗口以减小干涉,Herriott池由一对间隔约1 m、 曲率半径2 m的镀银反射镜(反射率约98%)组成,总光程约为120 m。激光光源 采用中心波长2327 nm的DFB半导体激光器,激光相对波长采用干涉仪 (SA200-12B,FSR=1.5 GHz,Thorlabs)标定。激光经准直器后,通过单面楔形 GaF2窗口进入Herriott池以减小干涉。激光在两个反射镜多次反射,出射光强经探 测器(MIP-DP-10M,VIGO)接收并通过高速数据采集卡(40 MHz,12 bit,PCI8502, ART)采集。

图1(b)为CRDS^[2,26]系统,考虑到2327 nm中红外CRDS系统复杂且昂贵, 本文CRDS测量系统中激光光源采用中心波长1567 nm的DFB半导体激光器,激光 束通过光隔离器以减少对激光器的光反馈,再通过声光调制器(G-1550-80)后 进入衰荡腔。衰荡腔由一对高反射率(反射率~99.9989 %@1567 nm, ATF)镜片

3

组成,镜片间距50 cm。通过信号发生器和电压放大器产生周期性高压信号,驱 动压电陶瓷扫描腔长,确保腔长扫描范围大于一个自由光谱区(FSR),使得任意 波长的激光均可耦合进腔内。腔出射光由高增益的雪崩光电探测器(APD410C, Thorlabs)接收,当探测器达到预设触发电平(4.9 V)时,数字延迟发生器(Model 577,BNC)发送脉冲信号,关闭声光调制器,从而切断入射激光,腔出射光强 呈单指数衰减。利用数据采集卡同时采集数字延迟发生器的脉冲信号和腔出射光 强信号,并采用LabVIEW联合MATLAB程序对出射光强信号实时处理,快速拟合 ^[30]得到衰荡时间。通过波长计(671A,Bristol)获得激光电流与波长v的关系, 步进式扫描激光电流来改变激光波长v,得到随波长改变的衰荡时间τ(v),采集多 个扫描周期并平均以提高信噪比。通过公式1/cτ(v)=κ(v)+κ₀将衰荡时间τ(v)转 换为吸收系数κ(v),其中c为光速,κo表示镜面反射率、散射、吸收等导致的损耗 ^[2.26],对1/cτ(v)机合即可得到待测气体分子光谱参数。衰荡腔和Herriott池通过聚 四氟管线联通,保证两气体池内的气体压力、温度和浓度完全相同。

图 1 实验系统 WM-DAS (a) 与 CRDS (b)。ISO: 光纤隔离器; AOM: 声光调制器; APD: 雪崩光电二极管; PD: 光电二极管; DDG: 数字延迟发生器; DAQ: 数据采集卡。 Fig. 1. The system schematic diagram of WM-DAS(a) and CRDS(b). ISO: fiber isolator, AOM:

acousto-optic modulator, APD: avalanche photodiode, PD: photodiode, DDG: digital delay

generator, DAQ: digital acquisition.

3 测量方法与分析

3.1 WM-DAS 原理及实验验证

WM-DAS^[27,28]采用频率为 ω 的正弦信号扫描分子吸收谱线,其激光光强 *I* 可以由下式描述:

$$I(t) = \sum_{k=0}^{\infty} A_k \cos(k\omega t) - B_k \sin(k\omega t)$$

(1)

其中k = 0,1,2..., t是扫描时间, $A_k 和 B_k \ge k$ 次特征频率的傅里叶系数实部和虚部。激光瞬时频率可表示为:

$$v(t) = v_0 + a_1 \cos(\omega t + \eta) + a_2 \cos\left[2(\omega t + \eta) + \varphi_2\right]$$
(2)

其中, v_0 为激光中心频率, a_1 和 a_2 为调制深度, g_2 为2倍频的初始相位角, η 为 1倍频的初始相位角,这些参数可通过于涉仪标定得到,如图2(a)所示。令: $x = \cos(\omega t + \eta)$ (3)

其中, -1 ≤ *x* ≤ 1。将公式 (3) 代入到公式 (1) 和公式 (2) 中,即可得到激 光光强 *I* 及激光频率 *v* 与系数 *x* 之间的关系:

$$I(x) = \sum_{k=0}^{\infty} A_k \cdot \cos\left[k \cdot (\arccos x \pm \eta)\right] \pm \sum_{k=0}^{\infty} B_k \cdot \sin\left[k \cdot (\arccos x \pm \eta)\right]$$
(4)

$$v(x) = v_0 + a_1 x + a_2 \cdot \left[(2x^2 - 1)\cos\varphi_2 \pm 2x\sin\varphi_2 \sqrt{1 - x^2} \right]$$
(5)

实际测量中,对测量的激光光强进行傅里叶变换得到 *A_k*和 *B_k*,如图 2(b) 所示,代入公式(4)可得到重构的光强 *I* 与*x*的关系,将系数 *a*₁、*a*₂及相位角 *η* 和 *φ*₂代入公式(5)即可得到频率 *v* 与*x*的关系,进而得到重构的光强 *I* 与频率 *v* 的关系 *I*(*v*),复现吸收率函数:

$$\alpha(v) = -\ln\left(\frac{I_t(v)}{I_0(v)}\right) = PS(T) XL\varphi(v)$$
(6)

其中, *P* 是气体压力, *S* 是谱线强度, *T* 是气体温度, *X* 是气体摩尔分数, *L* 是光程, *φ*(*v*)是线型函数, *I*₁(*v*)和 *I*₀(*v*)分别为重构的透射光强和激光入射光强。在常压下,碰撞展宽占据主要地位, *φ*(*v*)可用 Voigt 线型^[31]描述,较低压力时由于 Dicke 收敛效应明显,需采用 Rautian 线型^[32]描述。

图 2 (a) WM-DAS 波长标定; (b) 测量光强 L的傅里叶系数

Fig. 2. (a) Wavelength calibration of WM-DAS ;(b) Fourier coefficients of the measuring light intensity I_t .

在文献^[28]中,WM-DAS 方法单次测量的吸收率函数拟合残差标准差低至 ~1×10⁻⁵,但未分析连续测量时吸收率的检测限。为此,本文设计了带双面楔形 GaF2 窗口(减小干洗,增大 2.3 μm 激光透过率)的 0.5 m 单程气室以验证 WM-DAS 方法检测限。首先,采用 WM-DAS 对 CO 分子 4300.7 cm⁻¹ 吸收谱线的吸收率函 数进行了单次静态测量,谱线参数来源于 HITRAN 数据库^[33]。CO 标准气的浓度 分别为 101 ppm 和 53 ppm,气室内压力和温度分别为 26 kPa 和 290 K。在保证激 光中心频率不变条件下,微调激光器电流和温度,使探测器接收光强幅值均值约 为其量程的 1/2。正弦波调制频率为 1 kHz,共采集 100 个周期 (10⁵ 点,用时 100

ms),并对采集信号进行傅里叶变换,利用公式(4)和(5)重构得到吸收率函数,如图3(a)所示。在常温低压下,101 ppm和53 ppm对应的谱线吸收峰值分别为0.164%和0.084%,残差标准差分别为2.6×10⁻⁵和3.3×10⁻⁵,略大于文献^[28]测量结果。

为了进一步分析 WM-DAS 方法测量吸收率函数的检测限,在 CO浓度 53 ppm、 压力 26 kPa 和温度 290 K 条件下,长时间测量 0.5 m 气室内 CO 分子 4300.7 cm⁻¹ 谱线吸收率函数。为提升单次测量速率,采用近似算法^[34]替代 Voigt 和 Rautian 线型中积分形式的复数误差函数^[31,32],再利用 Levenberg-Marquardt 算法实现吸收 率函数快速拟合,时间约为 10 ms;并采用 5 kHz 调制频率,将 100 个周期的采 样时间缩短为 20 ms,采集卡内存数据读取~90 ms,单次测量总时间约 0.12 s,测 量速率达到 500 次 / min。测量吸收率峰值的 Allan 标准差^[35]如图 3 (b)所示, 积分时间 1 s时吸收率检测限达到 1×10⁻⁵ (0.5 ppm),10 s时达到 4×10⁻⁶ (0.2 ppm), 接近于文献^[34]测量结果,检测限随着时间延长进一步降低,在积分时间 200 s 时, 53 ppm 标气和零气 (N₂)的检测限分别低至 6×10⁻⁷ (0.03 ppm)和 4×10⁻⁷ (0.02 ppm),等效吸收系数最小可达到 8×10⁻⁹ cm⁻¹量级,接近 CRDS^[2,26]测量范围。

图 3 (a) 压力 26 kPa、温度 290 K 时, WM-DAS 单次测量浓度为 101 ppm 和 53 ppm 的 CO 吸收率函数; (b) 53 ppm 标气和纯 N₂ 时吸收率峰值的 Allan 标准差

Fig. 3. (a) CO absorptivity function of 101 ppm and 53 ppm measured by WM-DAS at 26 kPa and 290 K (b) The Allan standard deviation of the peak absorptivity at 53 ppm and pure N₂.

3.2 CRDS 原理及实验验证

在 CRDS 中,气体吸收系数(κ)与衰荡时间(τ)存在如下关系^[2,26]:

$$\kappa(\nu) = \frac{1}{c} \left(\frac{1}{\tau(\nu)} - \frac{1}{\tau_0(\nu)} \right) = PS(T) X \varphi(\nu) \tag{7}$$

其中,参数*S、P、T、X*和 *φ*(*v*)定义与公式(6)相同,*c*为光速, π 为空腔衰荡时间,其值取决于腔内镜面透射、颗粒散射、杂质吸收等导致的损耗,在较窄的 波长范围内可认为是常数,因此吸收光谱的拟合实际只需对测量的(*cc*)⁻¹ 拟合即可。 文献^[37-39]详细描述了腔衰荡光谱系统具体测量过程,由于本文采用了更高反射率 的镜片,在实验中通过降低压电陶瓷扫描速率至 5~10 Hz 以提升纵模光强,进而 提升衰荡信号的信噪比,测得的衰荡时间随激光电流的变化如图 4 所示。激光电 流采用锯齿波扫描,扫描周期~40 s,空腔衰荡时间~150 μs。腔体充入待测气体 CO 后,气体中微量 H₂O 及其它杂质增大了腔的损耗,因而基线衰荡时间为 146 μs 略小于空腔衰荡时间。

图 4 激光电流以锯齿波形式扫描时, 衰荡时间(黑色)与激光电流(蓝色)的关系

3.3 两种方法对比

大气中 CO 平均浓度约为几百 ppb,如 3.1 小节所述,虽然 0.5 m 光程时 WM-DAS 单次检测具有极高的信噪比,在 10 s 积分时间内最低检测限可达到 0.2

ppm,但仍然难以满足大气 CO 浓度在线监测需求。为此,本文采用 WM-DAS 方法结合长光程 Herriott 池(光程约120 m)以实现大气中痕量 CO 浓度在线监测, 理论上检测限可达到 0.8 ppb。为验证长光程 WM-DAS 测量系统的精度,在浓度 ~3 ppm、压力1 atm 和温度 300 K 条件下,对 4300.7 cm⁻¹谱线(谱线强度 2.625×10⁻²¹ cm⁻¹/(molecule·cm⁻²))的吸收率函数进行了静态测量,测量结果如图 5 (a)所示。正弦波调制频率为1 kHz,共采集 10³ 个周期,数据采集与处理总用时~1 s。 实际测量中,由于 Herriott 池体积较大且光路较复杂,易受低频振动、激光干涉影响,但 WM-DAS 方法通过傅里叶变换并提取特征频率复现吸收率函数,可以 有效减小干涉及低频振动带来的影响,谱线拟合残差标准差约为 5.1×10⁻⁵,略高于 3.1 节单光程测量结果, 信噪比达到 293 (峰值与残差标准差比值)。

CRDS 系统选用 1567 nm 的 DFB 激光器及反射率~99.9989 %的镜片, 空腔衰 荡时间接近~150 µs, 衰荡时间波动~0.5 µs。采用 CO 分子 6383.09 cm⁻¹ 谱线进行 测量, 在压力 1 atm、温度 300 K, 浓度~3 ppm 和谱线强度 2.021×10⁻²³ (cm⁻¹/(molecule·cm⁻²)时, 采集 10³ 个周期(共计 4 h)的衰荡时间并平均,最后得 到的吸收系数如图 5 (b) 所示, 吸收系数拟合残差标准差低至~4.8×10⁻¹¹ cm⁻¹, 信噪比约为 199。

两种方法均采集 10³ 个周期的数据并处理,虽然 WM-DAS 拟合残差标准差~4.2×10⁻⁹ cm⁻¹比 CRDS 高约 2 个数量级,但 WM-DAS 系统操作简单,成本低且测量速度快。

图 5 (a) WM-DAS 测量的 CO (4300.7 cm⁻¹) 吸收系数函数,采集 10³ 周期,总用时 1 s; (b) CRDS 测量的 CO (6383.09 cm⁻¹、线强度约为 4300.7 cm⁻¹的 0.77%) 吸收系数函数, 平均 10³次,总用时 4 h

Fig. 5. (a) The CO (4300.7 cm⁻¹) absorption coefficient function measured by WM-DAS, 10³
cycles of collection, and the total time is ~1 second; (b) The absorption coefficient function of CO (6383.09 cm⁻¹, the line strength is about 0.77% of 4300.7cm⁻¹.) measured by CRDS, with an average of 10³ times, with a total time of 4 hours.

为了分析长光程 WM-DAS 和 CRDS 的检测限,实验中将 Herriott 池和衰荡 腔通过管线串联,确保两者的温度、压力和组分浓度完全一致。在压力 1 atm、 温度 300 K,浓度~3 ppm 条件下,采用两种方法对 CO 气体浓度进行了长时间测 量,得到浓度的 Allan 标准差如图 6 所示。当积分时间 1 s 时,长光程 WM-DAS 和 CRDS 最小可探测浓度分别为 11 ppb(等效吸收系数为 4.2×10⁻⁹ cm⁻¹)和 80 ppb (2.2×10⁻¹⁰ cm⁻¹),积分时间 70 s 时,CRDS 达到最低检测限 6 ppb(1.5×10⁻¹¹ cm⁻¹), 优于文献^[37-39]结果、此时 WM-DAS 检测限低至 1.6 ppb (6.2×10⁻¹⁰ cm⁻¹);当积分 时间 200 s 时,WM-DAS 达到最低检测限 0.9 ppb (3.3×10⁻¹⁰ cm⁻¹)。上述结果表 明,长光程 WM-DAS 最小可探测吸收系数高于 CRDS,但由于长光程 WM-DAS

图 6 WM-DAS 和 CRDS 两种方法测量 CO 浓度的 Allan 标准差

Fig. 6. The Allan standard deviation of CO concentration measured by WM-DAS and CRDS. 4 实验结果与分析

4.1 不同浓度 CO 动态测量

在室温(300 K)、常压(1 atm)条件下,通过质量流量计控制 N₂(99.999%) 和 CO(101 ppm,背景气 N₂)的流量,配置低浓度(1.3~9.6 ppm)和极低浓度 (0.44~1.33 ppm)的 CO 气体,依次进入衰荡腔和 Herriott 池,气体流量约 1 L/min。 每种浓度测量时间约 30 min,测量结果如图 7 所示。不同浓度下两种方法测量结 果一致,但较低浓度(0.44~1.33 ppm)时,考虑到 6383.09 cm⁻¹ 谱线强度仅为 2.021×10⁻²³ (cm⁻¹/(molecule cm⁻²)),谱线中心频率处因气体吸收而导致的衰荡 时间减小为 0.8~2 μs(空腔衰荡时间~150 μs),略高于测量噪声(~0.5 μs),因此 CRDS 测量信噪比较低。不同浓度下,WM-DAS 测量的浓度标准差(~0.02 ppm) 和测量速度(~1 s)均优于 CRDS(0.1 ppm 和~40 s),但 Herriott 池体积偏大(5 L,衰荡腔约 0.5 L)导致气体更新速率较慢,进而影响响应时间,但实际应用中 可通过方案设计减小腔体体积以提高气体更新速率^[29]。

Fig. 7. Continuous measurement results of WM-DAS (red) and CRDS (blue) under different concentration ratios: (a) low concentration (1.3-9.6) ppm; (b) extremely low concentration (0.44-1.33) ppm.

在浓度稳定时,各种浓度下两种方法测量的吸收系数如图 8 所示。CRDS 吸 收系数拟合残差标准差~5×10⁻¹⁰ cm⁻¹,WM-DAS 为~5×10⁻⁹ cm⁻¹(5×10⁻⁵)。在 0.44 ppm 时,由于 CRDS 采用 6383.09 cm⁻¹谱线、谱线峰值处因吸收导致的衰荡时间 减小为~0.8 μs 仅略大于测量噪声,对应的吸收系数峰值和信噪比分别为 1.2×10⁻⁹ cm⁻¹和 9,测量速率为~40 s,而 WM-DAS 采用 4300.7 cm⁻¹谱线,吸收系数峰值 和信噪比分别为 1.6×10⁻⁷ cm⁻¹和 43,且测量速率为~1 s。上述实验结果表明: WM-DAS 方法通过提取吸收的特征频谱,有效减小了噪声及干涉影响,且测量 速率为~1 s,采用长光程 WM-DAS 系统可以满足大气 CO 浓度高精度在线监测需 求。

12

图 8 WM-DAS 和 CRDS 测量的不同浓度下 CO 的吸收系数(去除了 CRDS 测量的吸收系数

基线以便于比较)

Fig. 8. The absorption coefficient of CO measured by WM-DAS and CRDS at different concentrations (the baseline of absorption coefficient measured by CRDS is removed).

4.2 大气痕量 CO 连续监测

考虑到大气中 CO 浓度变化较慢,通过质量流量计控制进入气室的流量为 3 L/min,室外采样点距离地面高度约 4 m,采用长光程 WM-DAS 系统连续测量室 外大气 CO 浓度,并与中国环境监测总站(CNEMC)北京海淀万柳监测点(与 本文取样点直线距离约 5 km)每日测量结果进行对比,如图 9 所示。CO 浓度(绿 色实心点)在 0.2~1.2 ppm 范围之间,平均浓度~0.5 ppm。单日 CO 浓度波动较大, 这可能与取样点周围车辆、实验室设备排放和空气流动有关,这表明 CO 存在较 快的时间和空间变异性^[1]。大气中 CO 浓度每日测量数据(约 7×10⁴ 个)的均值 (蓝色点线)与监测点每日测量 CO 浓度(红色点线)高度一致,且与监测点每 日 PM2.5 浓度(黑色点线)相关度较高,间接反应空气质量,与文献^[1-4]结论相 一致。

5 结 论

本文选用 2327 nm 的 DFB 激光器,验证了 WM-DAS 方法在光程 0.5 m、室 温低压下 CO 分子 4300.7 cm⁻¹ 谱线吸收率的检测限 (4×10⁻⁷ (200 s)),并利用该 方法结合 120 m 长光程 Herriott 池于室温常压下静态测量该谱线,单次测量拟合 残差标准差~5.1×10⁻⁵,最低检测限低至~0.9 ppb (200 s)。采用流动配气方式对不 同浓度 (0.4~9.6 ppm) 的 CO 进行了连续监测,并将其与高精度 CRDS 方法测量 结果进行比较。结果表明:长光程 WM-DAS 与 CRDS 方法测量结果一致,测量 速度远快于 CRDS,测量系统简单且稳定。最后利用长光程 WM-DAS 系统连续 监测大气痕量 CO 浓度 1 个月时间,测量结果与中国环境监测总站北京海淀万柳 监测点高度一致。

参考文献

[1] Zellweger C, Steinbrecher R, Laurent O, Lee H, Kim S, Emmenegger L, Steinbacher M, Buchmann B 2019 *Atmos. Meas. Tech.* 12 5863-5878

- [2] Chen H, Karion A, Rella C W, Winderlich J, Gerbig C, Filges A, Newberger T, Sweeney C, Tans P P 2013 Atmos. Meas. Tech. 6 1031-1040
- [3] van der Laan S, Neubert R E M, and Meijer H A J 2009 Atmos. Meas. Tech. 2 549-559
- [4] Hammer S, Griffith D W T, Konrad G, Vardag S, Caldow C, Levin I 2013 Atmos. Meas. Tech. 6 1153-1170
- [5] Adámek P, Olejníček J, Čada M, Kment Š, Hubička Z 2013 Opt. Lett. 38 2428
- [6] Goldenstein C S, Spearrin R M, Jeffries J B, Hanson R K 2016 Prog. Energ.
- Combust. 60 132
- [7] Witzel O, Klein A, Meffert C, Wagner S, Kaiser S, Schulz C, Ebert V 2013 Opt.

Express 21 19951

- [8] Hanson R K 2011 P. Combust. Inst. 33 1
- [9] Pal M, Maity A, Pradhan M 2018 Laser Phys. 28 105702
- [10] Maity A, Pal M, Banik1 G D, Maithani S, Pradhan M 2017 Laser Phys. Lett. 14

[11] Zhou S, Liu N W, Shen C Y, Zhang L, He T B, Yu B L,Li J S 2019 Spectrochim.Acta. A. 2019 223 117332

[12] Tang Y Y, Liu W Q, Kan R F, Liu J G, He Y B, Zhang Y J, Xu Z Y, Ruan J, GengH 2011 Opt. Express 19 20224

- [13] Kasyutich1 V L, Holdsworth R J, Martin P A 2008 Appl. Phys. B 92 271-279
- [14] Stefan´ski P, Lewicki R, Sanchez N P, Tarka J, Griffin R J, Razeghi M, Tittel F K2014 Appl. Phys. B 117 519-526
- [15] Qiao S D, Ma Y F, He Y, Patimisco P, Sampaolo A, Spagnolo V 2021 Opt.

Express 29 25100

- [16] Dang J M, Yu H Y, Sun Y J, Wang Y D 2017 Infrared Phys. Techn. 82 183-191
- [17] Li J S, Parchatka U, Fischer H 2013 Sensor Actuat. B-chem. 182 659-667
- [18] Wei M, Ye Q H, Kan R F, Chen B, Yang C G, Xu Z Y, Chen X, Ruan J, Fan X L, Wang W, Hu M, Liu J G 2016 Chin. Phys. B 25 094210
- [19] Ghorbani R, Schmidt F M 2017 Appl. Phys. B 123 144
- [20] Silva M L, Wainner R T, Sonnenfroh D M, Rosen D I, Allen M G, Risby T H2005 Proc. SPIE, November 17 6010
- [21] Hangauer A, Chen J, Strzoda R, Ortsiefer M, Amann M C 2008 Opt. Lett. 33 1566-1568
- [22] Hangauer A, Chen J, Strzoda R, Fleischer M, Amann M C 2013 Opt. Express 22 13680
- [23] Ortsiefer M, Neumeyr C, Rosskopf J, Arafin S, Böhm G, Hangauer A, Chen J, Strzoda R, M.-C. Amann M C 2011 Proc. of SPIE 7945 794509
- [24] Ma Y F, Yu G, Zhang J B, Yu X, Sun R 2015 J. Opt. 17 055401
- [25] Lou D C, Rao W, Wang K, Song J L, Jiang Y J 2020 Global Intelligent Industry Conference 2020 Proc. SPIE March 18 2021 117801P
- [26] Chen B, Zhou Z Y, Kang P, Liu A W, Hu S M 2015 Spectrosc. Spect. Anal. 35
 971-974 (in Chinese) [陈兵,周泽义,康鹏,刘安雯,胡水明 2015 光谱学与光谱分析 35 971-974]
- [27] Du Y J, Peng Z M, Ding Y J 2018 Opt. Express 26 9263
- [28] Peng Z M, Du Y J, Ding Y J 2020 Sensors 20 616
- [29] Maity A, Pal M, Banik1 G D, Maithani S, Pradhan M 2017 Laser Phys. Lett. 14115701
- [30] Mazurenka M, Wada R, Shillings A J L, Butler T J A, Beames J M, Orr-Ewing A J2005 Appl. Phys. B 81 135

- [31] Li J D, Du Y J, Peng Z M, Ding Y J 2019 J. Quant. Spectrosc. Radiat. Transf. 224
- [32] Kassi S, Karlovets E V, Tashkun S A, Perevalov V I, Campargue A 2017 J. Quant. Spectrosc. Radiat. Transf. 187 414
- [33] Gordon I E, Rothman L S, Hill C, et al. 2017 J. Quant. Spectrosc. Radiat. Transf.203 3

[34] Boyer W, Lynas-Gray A E 2014 MNRAS 444 2555

- [35] Allan D W 1966 Proc. IEEE 54 221
- [36] Zhao G, Tan W, Jia M Y, Hou J J, Ma W G, Dong L, Zhang L, Feng X X, Wu X C,

Yin W B, Xiao L T, Axner O, Jia S T 2016 Sensors. 16 1544

- [37] Wang Z, Du Y J, Ding Y J, Peng Z M 2020 Acta Phys. Sin. 69 064204 (in Chinese) [王振, 杜艳君, 丁艳军, 彭志敏 2020 物理学报 69 064204]
- [38] Wang Z, Du Y J, Ding Y J, Peng Z M 2019 Acta Phys. Sin. 68 204204 (in Chinese) [王振, 杜艳君, 丁艳军, 彭志敏 2019 物理学报 68 204204]
- [39] Wang Z, Du Y J, Ding Y J, Peng Z M 2020 Sensors 20 585

Monitoring of ambient carbon monoxide concentrations based on wavelength modulation direct absorption spectroscopy^{*}

Wang Zhen Du Yan-Jun Ding Yan-Jun Li Zheng Peng Zhi-Min †

State Key Laboratory of Power Systems, Department of Energy and Power Engineering, Tsinghua

University, Beijing 100084, China

Abstract

Wavelength modulation-direct absorption spectroscopy (WM-DAS) has the advantages of both direct absorption spectroscopy (DAS) measurable absorptivity function and wavelength modulation spectrum (WMS) with high signal-to-noise ratio (SNR). In this paper, WM-DAS spectrum is used to measure the absorptivity of 4300.7 cm⁻¹ line of CO molecule and the detection limit is as low as 4×10^{-7} (200 s) at 0.5 m optical path, room temperature and low pressure. Then, combined with a 120 m long optical path Herriott cell, at room temperature and atmospheric pressure, the standard deviation of the fitting residual error of the absorptivity function is down to $\sim 5.1 \times 10^{-5}$ (1 s). Finally, different concentrations of CO are continuously monitored by long-path WM-DAS measurement system, and compared with cavity ring-down spectroscopy (CRDS). The experimental results show that the measurement results of long-path WM-DAS and CRDS method are the same. The detection limit of CO concentration in long-path WM-DAS system is as low as 0.9 ppb (200s), and the WM-DAS system is simple and the measurement speed is much faster than CRDS. At the same time, the long-path WM-DAS system is used to continuously monitor the atmospheric trace CO concentration and trend for one month, and the measured results are highly consistent with those of the China Environmental Monitoring Station.

Keywords: wavelength modulation-direct absorption spectroscopy, cavity ring down spectroscopy, absorptivity function, monitoring of CO concentration

^{*} Project supported by the National Key R&D Program of China (Grant No. 2019YFB2006002), and the National Natural Science Foundation of China (Grant No. 11972213, 51906120).