搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

样品温度对CF3+ 与Si表面相互作用影响的分子动力学模拟

宁建平 吕晓丹 赵成利 秦尤敏 贺平逆 Bogaerts A. 苟富君

引用本文:
Citation:

样品温度对CF3+ 与Si表面相互作用影响的分子动力学模拟

宁建平, 吕晓丹, 赵成利, 秦尤敏, 贺平逆, Bogaerts A., 苟富君

Molecular dynamics simulation of temperature effects on CF+3 etching of Si surface

Qin You-Min, Zhao Cheng-Li, He Ping-Ni, Gou Fu-Jun, Ning Jian-Ping, Lü Xiao-Dan, Bogaerts A.
PDF
导出引用
  • 利用分子动力学模拟方法研究了不同温度下CFx层对CF+3刻蚀Si表面过程的影响.由模拟数据可知,温度对C和F的沉积有显著的影响,通过提高样品的温度,物理刻蚀得到了加强,而化学刻蚀被减弱.同时,随着温度的升高,Si的刻蚀率相应增加.刻蚀产物中的SiF,SiF2的量随温度的增加而增加,SiF3的量与基体温度没有直接的关系.Si刻蚀率的增加主要是通过提高SiF,SiF2
    Molecular dynamics method was employed to investigate the effects of the reaction layer formed near the surface region on CF+3 etching of Si at different temperatures. The simulation results show that the coverages of F and C are sensitive to the surface temperature. With increasing temperature, the physical etching is enhanced, while the chemical etching is weakened. It is found that with increasing surface temperature, the etching rate of Si increases. As to the etching products, the yields of SiF and SiF2 increase with temperature, whereas the yield of SiF3 is not sensitive to the surface temperature. And the increase of the etching yield is mainly due to the increased desorption of SiF and SiF2. The comparison shows that the reactive layer plays an important part in the subsequeat impacting, which enhances the etching rate of Si and weakens the chemical etching intensity.
    • 基金项目: 贵州省优秀青年科技人才培养计划(批准号:700968101)和国际热核聚变实验堆(ITER)计划专项(批准号:2009GB104006)资助的课题.
    [1]

    Chang J P, Cobum J W 2003 J. Vac. Sci. Technol. A 21 S145

    [2]

    Dai Z L, Mao M, Wang Y N 2006 Physics 35 693 (in Chinese) [戴忠玲、毛 明、王友年 2006 物理 35 693]

    [3]

    Chai C C, Yang Y T, Li Y J, Jia H J, Ji H L 1999 Acta Phys. Sin. 48 550 (in Chinese) [柴常春、杨银堂、李跃进、贾护军、姬慧莲 1999 物理学报 48 550]

    [4]

    Wang Y N 2000 J. Dalian Univ. Technol. 40 12 (in Chinese) [王友年 2000 大连理工大学学报 40 12]

    [5]

    Humbird D, Graves D B 2004 J. Appl. Phys. 96 2466

    [6]

    Gou F, Zen L T, Meng C 2008 Thin Solid Films 516 1832

    [7]

    Gou F, Gleeson M A, Kleyn A W 2007 Surf. Sci. 601 76

    [8]

    Gou F, Gleeson M A, Kleyn A W 2007 Surf. Sci. 601 4250

    [9]

    Gou F, Lu X, Qian Q, Tang J Y 2007 Nucl. Instrum. Meth. B 265 479

    [10]

    Gou F, Gleeson M A, Kleyn A W 2008 Int. Rev. Phys. Chem. 27 229

    [11]

    Abrams C F, Graves D B 1999 J. Appl. Phys. 86 5938

    [12]

    Yin P H, Saxena V, Steckl A J 1997 Phys. Stat. Sol. 202 605

    [13]

    Alder B J, Wainwright T E 1957 Chem. Phys. 27 1208

    [14]

    Helmer B A 1997 J. Vac. Sci. Technol. A 15 2252

    [15]

    Helmer B A 1998 J. Vac. Sci. Technol. A 16 3502

    [16]

    Zhou Z Y, Wang T B, Cheng Z N 1999 Acta Phys. Sin. 48 2228 (in Chinese) [周正有、王铁兵、程兆年 1999 物理学报 48 2228]

    [17]

    Stillinger F H, Weber T A 1985 Phys. Rev. B 31 5262

    [18]

    Abrams C F, Graves D B 1999 J. Appl. Phys. 66 5938

    [19]

    Verlet L 1967 Phys. Rev. 159 98

    [20]

    Berendsen H J C, Postma J P M, Gunsteren W F V, DiNola A, Haak J R 1984 Chem. Phys. 81 3684

    [21]

    Abrams C F, Graves D B 1999 J. Appl. Phys. 86 5938

    [22]

    Winters H F, Coburn I W 1979 Appl. Phys. Lett. 34 70

    [23]

    Tu Y Y, Chuang T J, Winters H F 1981 Phys. Rev. B 23 823

    [24]

    Mauer J L, Logan J S, Zielinski L B 1978 J. Vac. Sci. Technol. 15 1734

  • [1]

    Chang J P, Cobum J W 2003 J. Vac. Sci. Technol. A 21 S145

    [2]

    Dai Z L, Mao M, Wang Y N 2006 Physics 35 693 (in Chinese) [戴忠玲、毛 明、王友年 2006 物理 35 693]

    [3]

    Chai C C, Yang Y T, Li Y J, Jia H J, Ji H L 1999 Acta Phys. Sin. 48 550 (in Chinese) [柴常春、杨银堂、李跃进、贾护军、姬慧莲 1999 物理学报 48 550]

    [4]

    Wang Y N 2000 J. Dalian Univ. Technol. 40 12 (in Chinese) [王友年 2000 大连理工大学学报 40 12]

    [5]

    Humbird D, Graves D B 2004 J. Appl. Phys. 96 2466

    [6]

    Gou F, Zen L T, Meng C 2008 Thin Solid Films 516 1832

    [7]

    Gou F, Gleeson M A, Kleyn A W 2007 Surf. Sci. 601 76

    [8]

    Gou F, Gleeson M A, Kleyn A W 2007 Surf. Sci. 601 4250

    [9]

    Gou F, Lu X, Qian Q, Tang J Y 2007 Nucl. Instrum. Meth. B 265 479

    [10]

    Gou F, Gleeson M A, Kleyn A W 2008 Int. Rev. Phys. Chem. 27 229

    [11]

    Abrams C F, Graves D B 1999 J. Appl. Phys. 86 5938

    [12]

    Yin P H, Saxena V, Steckl A J 1997 Phys. Stat. Sol. 202 605

    [13]

    Alder B J, Wainwright T E 1957 Chem. Phys. 27 1208

    [14]

    Helmer B A 1997 J. Vac. Sci. Technol. A 15 2252

    [15]

    Helmer B A 1998 J. Vac. Sci. Technol. A 16 3502

    [16]

    Zhou Z Y, Wang T B, Cheng Z N 1999 Acta Phys. Sin. 48 2228 (in Chinese) [周正有、王铁兵、程兆年 1999 物理学报 48 2228]

    [17]

    Stillinger F H, Weber T A 1985 Phys. Rev. B 31 5262

    [18]

    Abrams C F, Graves D B 1999 J. Appl. Phys. 66 5938

    [19]

    Verlet L 1967 Phys. Rev. 159 98

    [20]

    Berendsen H J C, Postma J P M, Gunsteren W F V, DiNola A, Haak J R 1984 Chem. Phys. 81 3684

    [21]

    Abrams C F, Graves D B 1999 J. Appl. Phys. 86 5938

    [22]

    Winters H F, Coburn I W 1979 Appl. Phys. Lett. 34 70

    [23]

    Tu Y Y, Chuang T J, Winters H F 1981 Phys. Rev. B 23 823

    [24]

    Mauer J L, Logan J S, Zielinski L B 1978 J. Vac. Sci. Technol. 15 1734

计量
  • 文章访问数:  6645
  • PDF下载量:  589
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-06-11
  • 修回日期:  2010-02-03
  • 刊出日期:  2010-05-05

/

返回文章
返回