|
|
p型金属氧化物半导体场效应晶体管界面态的积累对单粒子电荷共享收集的影响 |
陈建军, 陈书明, 梁斌, 刘必慰, 池雅庆, 秦军瑞, 何益百 |
国防科学技术大学计算机学院,长沙 410073 |
Influence of interface traps of p-type metal-oxide-semiconductor field effect transistor on single event charge sharing collection |
Chen Jian-Jun, Chen Shu-Ming, Liang Bin, Liu Bi-Wei, Chi Ya-Qing, Qin Jun-Rui, He Yi-Bai |
School of Computer Science, National University of Defense Technology, Changsha 410073, China |
|
摘要: 由于负偏置温度不稳定性和热载流子注入,p型金属氧化物半导体场效应晶体管(pMOSFET)将在工作中不断退化,而其SiO2/Si界面处界面态的积累是导致其退化的主要原因之一. 采用三维器件数值模拟方法,基于130 nm体硅工艺,研究了界面态的积累对相邻pMOSFET之间单粒子电荷共享收集的影响. 研究发现,随着pMOSFET SiO2/Si界面处界面态的积累,相邻pMOSFET漏端的单粒子电荷共享收集量均减少. 还研究了界面态的积累对相邻反相器中单粒子电荷共享收集
关键词:
负偏置温度不稳定性
电荷共享收集
双极放大效应
单粒子多瞬态
|
|
Abstract: Due to negative bias temperature instability and hot carrier injection, p-type metal-oxide-semiconductor field effect transistor (MOSFET) will degrade with time, and the accumulation of interface traps is one major reason for the degradation. In this paper, the influence of the accumulation of pMOSFET interface traps on single event charge sharing collection between two adjacent pMOSFET is studied based on three-dimensional numerical simulations on a 130 nm bulk silicon complementary metal-oxide-semiconductor process, the results show that with the accumulated interface traps increasing, the charge sharing collection reducs for both the two pMOSFETs. The influence of the accumulation of pMOSFET interface traps on single event charge sharing induced multiple transient pulses between two adjacent inverters is also studied, the results show that the multiple transient pulses induced by the two pMOSFET charge sharings will be compressed, while multiple transient pulses induced by the two nMOSFET charge sharing will be broadened.
Keywords:
negative bias temperature instability
charge sharing collection
bipolar amplification effect
single event multiple transient
|
收稿日期: 2010-09-03
出版日期: 2011-08-15
|
|
基金: 国家自然科学基金重点项目(批准号:60836004)和国家自然科学基金(批准号:61006070)资助的课题. |
References
[1] | Cao Y R, Ma X H, Hao Y, Zhang Y, Yu L, Zhu Z W, Chen H F 2007 Chin. Phys. B 16 1140
|
[2] | Cao Y R, Hao Y, Ma X H, Hu S G 2009 Chin. Phys. B 18 309
|
[3] | Cao Y R, Ma X H, Hao Y, Hu S G 2010 Chin. Phys. B 19 473
|
[4] | Islam A E, Kufluoglu H, Varghese D, Mahapatra S, Alam M A 2007 IEEE Trans. Electron Dev. 54 2143
|
[5] | Schroder D K 2007 Microelectron. Reliab. 47 841
|
[6] | Paul B C, Kang K, Kufluoglu H, Alam M A, Roy K 2005 IEEE Electron Dev. Lett. 26 560
|
[7] | Kang K, Kufluoglu H, Roy K, Alam M A 2007 IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 26 1770
|
[8] | Amusan A, Witulski A F, Massengill L, Bhuva B L, Fleming P R, Alles M L, Sternberg A L, Black J D, Schrimpf R D 2006 IEEE Trans. Nucl. Sci. 53 3253
|
[9] | Narasimham B, Amusan O A, Bhuva B L, Schrimpf R D, Holman W T 2008 IEEE Trans. Nucl. Sci. 55 3077
|
[10] | Casey M C, Duncan A R, Bhuva B L, Robinson W H, Massengill L W 2008 IEEE Trans. Nucl. Sci. 55 3136
|
[11] | Amusan A, Casey M C, Bhuva B L, McMorrow D, Gadlage M J, Melinger J S, Massengill L W 2009 IEEE Trans. Nucl. Sci. 56 3065
|
[12] | Amusan A, Massengill L W, Baze M P, Bhuva B L, Witulski A F, DasGupta S, Sternberg A L, Fleming P R, Heath C C, Alles M L 2007 IEEE Trans. Nucl. Sci. 54 2584
|
[13] | Liu B W, Chen S M, Liang B, Liu Z, Zhao Z Y 2009 IEEE Trans. Nucl. Sci. 56 2473
|
[14] | Zhou J, Fleetwood D M, Felix J A, Gusev E P, Emic C D 2005 IEEE Trans. Nucl. Sci. 52 2231
|
[15] | Silvestri M, Gerardin S, Paccagnella A 2008 IEEE Trans. Nucl. Sci. 55 3216
|
[16] | Silvestri M, Gerardin S, Paccagnella A 2008 IEEE Trans. Nucl. Sci. 55 1960
|
[17] | Sexton F W, Schwank J R 1985 IEEE Trans. Nucl. Sci. 32 3975
|
[18] | Neamen D A 2003 Semiconductor Physics and Devices: Basic Principles (3rd ed) (Beijing: Tsinghua University Press) p393
|
|
|
|