|
|
纳米流体对流换热机理分析 |
肖波齐1 2, 范金土2, 蒋国平3, 陈玲霞1 |
1. 三明学院物理与机电工程学院, 三明 365004; 2. 香港理工大学纺织与制衣系, 香港 999077; 3. 广州大学工程抗震中心, 广州 510405 |
Analysis of convection heat transfer mechanism in nanofluids |
Xiao Bo-Qi1 2, Fan Jin-Tu2, Jiang Guo-Ping3, Chen Ling-Xia1 |
1. Department of Physics and Electromechanical Engineering, Sanming University, Sanming 365004, China; 2. Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong 99907, China; 3. Earthquake Engineering Research Test Center, Guangzhou University, Guangzhou 510405, China |
|
摘要: 考虑在纳米流体中纳米颗粒做布朗运动引起的对流换热, 基于纳米颗粒在纳米流体中遵循分形分布, 本文得到纳米流体对流换热的机理模型. 本解析模型没有增加新的经验常数, 从该模型发现纳米流体池沸腾热流密度是温度、纳米颗粒的平均直径、 纳米颗粒的浓度、纳米颗粒的分形维数、沸腾表面活化穴的分形维数、基本液体的物理特性的函数. 对不同的纳米颗粒浓度和不同的纳米颗粒平均直径与不同的实验数据进行了比较, 模型预测的结果与实验结果相吻合. 所得的解析模型可以更深刻地揭示纳米流体对流换热的物理机理.
关键词:
纳米流体
对流换热
分形
|
|
Abstract: Energy shortage and environment pollution are the major and large problems presently encountered by human all over the world. It is an effective way to save energy and reduce emission of polluted gas by using the nanofluids technology. There has been not a widely recognized theory which can explain flow and heat transfer of nanofluids until now. So the mechanism of flow and heat transfer of nanofluids is not clear. Considering the Brownian motion of nanoparticles in nanofluids, a mechanism model for heat transfer by heat convection is proposed based on the fractal distribution of nanoparticle. No additional/new empirical constant is introduced. The proposed fractal model for heat flux of nanofluids is found to be a function of temperature, average nanoparticle size, concentration, fractal dimension of nanoparticles, fractal dimension of active cavities on boiling surfaces and basic fluid property in pool boiling. The model predictions are compared with the existing experimental data, and fair agreement between the model predictions and experimental data is found for the cases of different nanoparticle concentrations and different average nanoparticle diameters. The analytical model can reveal the physical principles for convection heat transfer in nanofluids.
Keywords:
nanofluids
convection heat transfer
fractal
|
收稿日期: 2011-09-23
|
|
基金: 国家自然科学基金(批准号: 11102100), 福建省自然科学基金(批准号: 2012J01017)和福建省省属高校科研专项基金(批准号: JK2011056)资助的课题. |
References
[1] | Choi U S in Siginer D A, Wang H P eds. Developments and Applications of non-Newtonian glows ASME FED-231 (New York: [s.n.]) p99
|
[2] | Xuan Y M, Li Q 2000 Int. J. Heat Fluid Flow 21 58
|
[3] | Xie H Q, Xi T G, Wang J C 2003 Acta Phys. Sin. 52 1444 (in Chinese) [谢华清, 奚同庚, 王锦昌 2003 物理学报 52 1444]
|
[4] | Das S K, Putra N, Roetzel W 2003 Int. J. Heat Mass Transfer 46 851
|
[5] | Jang S P, Choi S U S 2004 Appl. Phys. Letts. 84 4316
|
[6] | Milanova D, Kumar R 2005 Appl. Phys. Lett. 87 233107
|
[7] | Prasher R, Bhattacharya P, Phelan P E 2005 Phys. Rev. Lett. 94 025901
|
[8] | Hong K S, Hong Tae-Keun, Yang Ho-Soon 2006 Appl. Phys. Lett. 88 031901
|
[9] | Liu Z H, Liao L 2008 Int. J. Heat Mass Tran. 51 2593
|
[10] | Trisaksri V, Wongwises S 2009 Int. J. Heat Mass Tran. 52 1582
|
[11] | Xie H Q, Chen L F 2009 Acta Phys. Sin. 58 2513 (in Chinese) [谢华清, 陈立飞 2009 物理学报 58 2513]
|
[12] | Zhao S, Yin J B, Zhao X P 2010 Acta Phys. Sin. 59 3302 (in Chinese) [赵晟, 尹剑波, 赵晓鹏 2010 物理学报 59 3302]
|
[13] | Duangthongsuk W, Wongwises S 2010 Int. J. Heat Mass Tran. 53 334
|
[14] | Avramenko A A, Blinov D G, Shevchuk V 2011 Phys. Fluids 23 082002
|
[15] | Wang Y, Keblinski P 2011 Appl. Phys. Lett. 99 073112
|
[16] | Xiao B Q, Yu B M 2007 Int. J. Thermal Sci. 46 426
|
[17] | Xiao B Q, Yu B M 2007 Int. J. Multiphase Flow. 33 1126
|
[18] | Xiao B Q, Wang Z C, Jiang G P, Chen L X, Wei M J, Rao L Z 2009 Acta Phys. Sin. 58 2513 (in Chinese) [肖波齐, 王宗篪, 蒋国平, 陈玲霞, 魏茂金, 饶连周 2009 物理学报 58 2523]
|
[19] | Wang B X, Zhou L P, Peng X F 2003 Int. J. Heat Mass Tran. 46 2665
|
[20] | Yu B M, Cheng P 2002 Int. J. Heat Mass Tran. 45 2983
|
[21] | Feng Y J, Yu B M, Zou M Q, Zhang D M 2004 J. Phys. D: Appl. Phys. 37 3425
|
[22] | Maxwell J C 1954 A Treatise on Electricity and Magnetism (Cambridge: Oxford University Press) p435
|
[23] | Mikic B B, Rohsenow W M 1969 J. Heat Transfer 91 245
|
[24] | Judd R L, Hwang K S 1976 Int. J. Heat Mass Tran. 98 623
|
[25] | Han C Y, Griffith P 1965 Int. J. Heat Mass Tran. 8 887
|
[26] | Yu B M, Cheng P 2002 AIAA J. Thermophysics and Heat Transfer 16 22
|
[27] | Yu B M, Cheng P 2002 J. Heat Transfer 124 1117
|
[28] | Bang I C, Chang S H 2005 Int. J. Heat Mass Tran. 48 2407
|
[29] | Cai J C, Yu B M, Zou M Q, Luo L 2010 Energy Fuels 24 1860
|
[30] | Cai J C, Yu B M 2010 Fractals 18 417
|
[31] | Cai J C, Yu B M, Zou M Q, Mei M F 2010 Chem. Eng. Sci. 65 5178
|
[32] | Cai J C, Yu B M 2011 Transp. Porous Media 89 251
|
[33] | Jiang G P, Tao W J, Huan S, Xiao B Q 2012 Acta Phys. Sin. 61 070503 (in Chinese) [蒋国平, 陶文俊, 浣石, 肖波齐 2012 物理学报 61 070503]
|
[1]
|
杨秦男, 张延惠, 蔡祥吉, 蒋国辉, 徐学友. RIKEN介观器件腔中粒子输运过程的混沌性质及分形自相似结构研究[J]. 物理学报, 2013, 62(8): 080505.
|
[2]
|
火元莲, 张广庶, 吕世华, 袁萍. 闪电的分形特征研究及其在自动识别中的应用[J]. 物理学报, 2013, 62(5): 059201.
|
[3]
|
程用志, 聂彦, 龚荣洲, 王鲜. 基于电阻膜与分形频率选择表面的超薄宽频带超材料吸波体的设计[J]. 物理学报, 2013, 62(4): 044103.
|
[4]
|
赵甜, 陈群. (火积)的宏观物理意义及其应用[J]. 物理学报, 2013, 62(23): 234401.
|
[5]
|
夏步刚, 张德海, 孟进, 赵鑫. 毫米波二阶分形频率选择表面寄生谐振的抑制[J]. 物理学报, 2013, 62(17): 174103.
|
[6]
|
闫寒, 张文明, 胡开明, 刘岩, 孟光. 随机粗糙微通道内流动特性研究[J]. 物理学报, 2013, 62(17): 174701.
|
[7]
|
王秀芝, 高劲松, 徐念喜. Ku/Ka波段双通带频率选择表面设计研究[J]. 物理学报, 2013, 62(16): 167307.
|
[8]
|
郭亚丽, 徐鹤函, 沈胜强, 魏兰. 利用格子Boltzmann方法模拟矩形腔内纳米流体Raleigh-Benard对流 [J]. 物理学报, 2013, 62(14): 144704.
|
[9]
|
蔡建超, 郭士礼, 游利军, 胡祥云. 裂缝-孔隙型双重介质油藏渗吸机理的分形分析[J]. 物理学报, 2013, 62(1): 014701.
|
[10]
|
罗哲贤, 余晖, 平凡, 马革兰. 涡旋轴对称化的分形维数表征[J]. 物理学报, 2012, 61(24): 244702.
|
[11]
|
张永伟, 唐刚, 韩奎, 寻之朋, 谢裕颖, 李炎. 分形基底上刻蚀模型动力学标度行为的 数值模拟研究[J]. 物理学报, 2012, 61(2): 020511.
|
[12]
|
吴国成, 石祥超 . 非光滑热曲线的分数阶次可微性研究 [J]. 物理学报, 2012, 61(19): 190502.
|
[13]
|
刘宁波, 关键, 黄勇, 王国庆, 何友 . 海杂波的分段分数布朗运动模型 [J]. 物理学报, 2012, 61(19): 190503.
|
[14]
|
李天鹏, 王光明, 梁建刚, 张晨新 . 新型复合左右手传输线及其在滤波器设计中的应用 [J]. 物理学报, 2012, 61(19): 194201.
|
[15]
|
尚慧琳. 受迫Holmes-Duffing系统安全域分形及时滞速度反馈控制[J]. 物理学报, 2012, 61(18): 180506.
|
|
|
|