搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

等离子体活化硒对电沉积Cu-In-Ga金属预制层硒化的影响

张超 敖建平 姜韬 孙国忠 周志强 孙云

引用本文:
Citation:

等离子体活化硒对电沉积Cu-In-Ga金属预制层硒化的影响

张超, 敖建平, 姜韬, 孙国忠, 周志强, 孙云

Influences of plasma activation Se source on selenization of electrodeposited Cu-In-Ga metallic precursors

Zhang Chao, Ao Jian-Ping, Jiang Tao, Sun Guo-Zhong, Zhou Zhi-Qiang, Sun Yun
PDF
导出引用
  • 使用等离子体活化硒源对电沉积制备的Cu-In-Ga金属预制层进行了硒化处理时, 发现等离子体功率对Cu(In1-xGax)Se2(CIGS)晶粒的生长有重要影响, 当等离子体功率为75 W时, 制备出单一Cu(In0.7Ga0.3)Se2相的CIGS薄膜. 通过对不同衬底温度的等离子体活化硒源硒化的CIGS 薄膜进行了研究与分析, 并与普通硒化后的薄膜进行对比, 发现高活性硒在低温下会促进Ga-Se二元相的生成, 从而有利于Cu(In0.7Ga0.3)Se2单相的生长. 对等离子体硒化后的CIGS薄膜进行了电池制备, 发现单相CIGS薄膜没有显著提高电池性能. 通过优化工艺, 所制备的CIGS电池效率达到了9.4%.
    In this paper, the electrodeposited Cu-In-Ga metallic precursors have been selenized by using plasma activation Se source. The power of plasma has great influence on the grain growth of Cu(In1-xGax)Se2(CIGS). The films were shown to be single phase Cu(In0.7Ga0.3)Se2 when the plasma power was 75W. And the fact that high activity Se promotes the generation of binary selenide phase at a low temperature, thus helping the growth of single phase Cu(In0.7Ga0.3)Se2, was proved by XRD analysis of the films selenized at defferent temperatures and the comparison with the films prepared by ordinary selenization. Solar cells have been prepared and found that the single phase have no influence on battery performance. The efficiency can reach 9.4% by process optimization.
    • 基金项目: 高等学校博士学科点专项科研基金 (批准号: 20090031110031) 资助的课题.
    • Funds: Project supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20090031110031).
    [1]

    Jackson P, Hariskos D, Lotter E, Paetel S, Wuerz R, Menner R, Wischmann W, Powalla M 2011 Progress in Photovoltaics: Research and Applications 19 894

    [2]

    Basol B M, Pinarbasi M, Aksu S, Wang J, Matus Y, Johnson T, Han Y, Narasinham M, Metin B 2008 Proc. 23rd European Photovoltaic Solar Energy Conference Valencia, Spain, September 1-5 2008 p2137

    [3]

    Jensen C L, Tarrant D E, Ermer J H, Pollock G A, 1993 Proceedings of the 23rd IEEE PVSC IEEE Louisville, USA, May 10-14, 1993 p577

    [4]

    He J J, Liu W, Li Z G, Li B Y, Han A J, Li G M, Zhang C,Zhang Y, Sun Y 2012 Acta Phys. Sin. 61 198801 (in Chinese) [何静婧, 刘玮, 李志国, 李博研, 韩安军, 李光旻, 张超, 张毅, 孙云 2012 物理学报 61 198801]

    [5]

    Ribeaucourt L, Savidand G, Lincot D, Chassaing E 2011 Electrochimica Acta 56 6628

    [6]

    Tanaka Y, Akema N, Morishita T, Okumura D, Kushiya K 2002 Proceedings of the 17th European PVSEC, Florence, Italy, 2002 p989

    [7]

    Dejene F B 2009 Solar Energy Materials & Solar Cells 93 577

    [8]

    Ao J P, Yang L, Yan L, Sun G Z, He Q, Zhou Z Q, Sun Y 2009 Acta Phys. Sin. 58 1870 (in Chinese) [敖建平, 杨亮, 闫礼, 孙国忠, 何青, 周志强, 孙云 2009 物理学报 58 1870]

    [9]

    Markus E B, Amy S G, Rick M, James K, Rommel N 2000 Solar Energy Materials & Solar Cells 64 135

    [10]

    Kihwan K, Gregory M H, Trang H, William N S 2012 J. Appl. Phys. 111 083710

    [11]

    Alberts V 2004 Semicond. Sci. Technol. 19 65

    [12]

    Chang C H 1999 Processing and Characterization of Copper Indium Selenide for Photovoltaic Applications: [dissertation] University of Florida, USA, 1999

    [13]

    Kosaraju S, Repins I,Wolden C A 2005 Journal of Vacuum Science & Technology A 23 1202

    [14]

    Shogo I, Hajime S, Akimasa Y, Paul F, Keiichiro S,Koji M, Shigeru N 2007 Appl. Phys. Lett. 91 041902

    [15]

    Zhang C, Ao J P, Wang L, Jiang T, Sun G Z, He Q, Zhou Z Q, Sun Y 2012 Acta Phys. Chim. Sin. 28 1913 (in Chinese) [张超, 敖建平, 王利, 姜韬, 孙国忠, 何青, 孙云 2012 物理化学学报 28 1913]

    [16]

    Marudachalam M, Birkmire R W, Hichri H, Schultz J M, Swartzlander A, Al-Jassim M M 1997 J. Appl. Phys. 82 2896

    [17]

    Hanket G M, Shafarman W N, McCandless B E, Birkmire R W 2007 J. Appl. Phys. 102 074922

    [18]

    Woo K K, Gregory M H, William N S 2009 Proceedings of the 34rd IEEE PVSC IEEE Philadelphia, Pennsylvania, USA, June 7-12, 2009 p000844

    [19]

    Satoshi Y, Brian E M, Robert W B 1993 Proceedings of the 23rd IEEE PVSC IEEE, Louisville, USA, May 10-14, 1993 p607

    [20]

    Dejene F B, Alberts V 2003 J. Mater. Sci.: Mater Electron. 14 89

    [21]

    Bekker J, Albert V, Witcom M J 2001 Thin Solid Films 387 40

    [22]

    Sang D K, Hyeong J K, Kyung H Y, Jinsoo S 2000 Solar Energy Materials & Solar Cells 62 357

    [23]

    Hanna G, Jasenek A, Rau U, Schock H W 2001 Thin Solid Films 387 71

  • [1]

    Jackson P, Hariskos D, Lotter E, Paetel S, Wuerz R, Menner R, Wischmann W, Powalla M 2011 Progress in Photovoltaics: Research and Applications 19 894

    [2]

    Basol B M, Pinarbasi M, Aksu S, Wang J, Matus Y, Johnson T, Han Y, Narasinham M, Metin B 2008 Proc. 23rd European Photovoltaic Solar Energy Conference Valencia, Spain, September 1-5 2008 p2137

    [3]

    Jensen C L, Tarrant D E, Ermer J H, Pollock G A, 1993 Proceedings of the 23rd IEEE PVSC IEEE Louisville, USA, May 10-14, 1993 p577

    [4]

    He J J, Liu W, Li Z G, Li B Y, Han A J, Li G M, Zhang C,Zhang Y, Sun Y 2012 Acta Phys. Sin. 61 198801 (in Chinese) [何静婧, 刘玮, 李志国, 李博研, 韩安军, 李光旻, 张超, 张毅, 孙云 2012 物理学报 61 198801]

    [5]

    Ribeaucourt L, Savidand G, Lincot D, Chassaing E 2011 Electrochimica Acta 56 6628

    [6]

    Tanaka Y, Akema N, Morishita T, Okumura D, Kushiya K 2002 Proceedings of the 17th European PVSEC, Florence, Italy, 2002 p989

    [7]

    Dejene F B 2009 Solar Energy Materials & Solar Cells 93 577

    [8]

    Ao J P, Yang L, Yan L, Sun G Z, He Q, Zhou Z Q, Sun Y 2009 Acta Phys. Sin. 58 1870 (in Chinese) [敖建平, 杨亮, 闫礼, 孙国忠, 何青, 周志强, 孙云 2009 物理学报 58 1870]

    [9]

    Markus E B, Amy S G, Rick M, James K, Rommel N 2000 Solar Energy Materials & Solar Cells 64 135

    [10]

    Kihwan K, Gregory M H, Trang H, William N S 2012 J. Appl. Phys. 111 083710

    [11]

    Alberts V 2004 Semicond. Sci. Technol. 19 65

    [12]

    Chang C H 1999 Processing and Characterization of Copper Indium Selenide for Photovoltaic Applications: [dissertation] University of Florida, USA, 1999

    [13]

    Kosaraju S, Repins I,Wolden C A 2005 Journal of Vacuum Science & Technology A 23 1202

    [14]

    Shogo I, Hajime S, Akimasa Y, Paul F, Keiichiro S,Koji M, Shigeru N 2007 Appl. Phys. Lett. 91 041902

    [15]

    Zhang C, Ao J P, Wang L, Jiang T, Sun G Z, He Q, Zhou Z Q, Sun Y 2012 Acta Phys. Chim. Sin. 28 1913 (in Chinese) [张超, 敖建平, 王利, 姜韬, 孙国忠, 何青, 孙云 2012 物理化学学报 28 1913]

    [16]

    Marudachalam M, Birkmire R W, Hichri H, Schultz J M, Swartzlander A, Al-Jassim M M 1997 J. Appl. Phys. 82 2896

    [17]

    Hanket G M, Shafarman W N, McCandless B E, Birkmire R W 2007 J. Appl. Phys. 102 074922

    [18]

    Woo K K, Gregory M H, William N S 2009 Proceedings of the 34rd IEEE PVSC IEEE Philadelphia, Pennsylvania, USA, June 7-12, 2009 p000844

    [19]

    Satoshi Y, Brian E M, Robert W B 1993 Proceedings of the 23rd IEEE PVSC IEEE, Louisville, USA, May 10-14, 1993 p607

    [20]

    Dejene F B, Alberts V 2003 J. Mater. Sci.: Mater Electron. 14 89

    [21]

    Bekker J, Albert V, Witcom M J 2001 Thin Solid Films 387 40

    [22]

    Sang D K, Hyeong J K, Kyung H Y, Jinsoo S 2000 Solar Energy Materials & Solar Cells 62 357

    [23]

    Hanna G, Jasenek A, Rau U, Schock H W 2001 Thin Solid Films 387 71

  • [1] 韩晓静, 杨静, 张佳莉, 刘冬雪, 石标, 王鹏阳, 赵颖, 张晓丹. 反应等离子体沉积二氧化锡电子传输层及其在钙钛矿太阳电池中的应用. 物理学报, 2023, 72(17): 178401. doi: 10.7498/aps.72.20230693
    [2] 刘武, 朱成皖, 李昊天, 赵谡玲, 乔泊, 徐征, 宋丹丹. 基于机器学习和器件模拟对Cu(In,Ga)Se2电池中Ga含量梯度的优化分析. 物理学报, 2021, 70(23): 238802. doi: 10.7498/aps.70.20211234
    [3] 杨如霞, 卢玉明, 曾丽竹, 张禄佳, 李冠男. 钆掺杂对0.7BiFe0.95Ga0.05O3-0.3BaTiO3陶瓷的结构、介电性能和多铁性能的影响. 物理学报, 2020, 69(10): 107701. doi: 10.7498/aps.69.20200175
    [4] 杨郁, 唐成双, 赵一帆, 虞一青, 辛煜. 甚高频激发的容性耦合Ar+O2等离子体电负特性研究. 物理学报, 2017, 66(18): 185202. doi: 10.7498/aps.66.185202
    [5] 杨大鹏, 李苏宇, 姜远飞, 陈安民, 金明星. 飞秒激光成丝诱导Cu等离子体的温度和电子密度. 物理学报, 2017, 66(11): 115201. doi: 10.7498/aps.66.115201
    [6] 李百慧, 高勋, 宋超, 林景全. 磁空混合约束激光诱导Cu等离子体光谱特性. 物理学报, 2016, 65(23): 235201. doi: 10.7498/aps.65.235201
    [7] 刘芳芳, 何青, 周志强, 孙云. Cu元素对Cu(In, Ga)Se2薄膜及太阳电池的影响. 物理学报, 2014, 63(6): 067203. doi: 10.7498/aps.63.067203
    [8] 刘芳芳, 孙云, 何青. Ga梯度分布对Cu(In,Ga)Se2薄膜及太阳电池的影响. 物理学报, 2014, 63(4): 047201. doi: 10.7498/aps.63.047201
    [9] 田晶, 杨鑫, 刘尚军, 练晓娟, 陈金伟, 王瑞林. 直流磁控溅射厚度对Cu(Inx,Ga1-x)Se2背接触Mo薄膜性能的影响. 物理学报, 2013, 62(11): 116801. doi: 10.7498/aps.62.116801
    [10] 刘芳芳, 张力, 何青. Cu(In, Ga)Se2 薄膜在共蒸发"三步法"中的相变过程. 物理学报, 2013, 62(7): 077201. doi: 10.7498/aps.62.077201
    [11] 韩安军, 孙云, 李志国, 李博研, 何静靖, 张毅, 刘玮. 低温超薄高效Cu(In, Ga)Se2太阳电池的实现. 物理学报, 2013, 62(4): 048401. doi: 10.7498/aps.62.048401
    [12] 张超, 敖建平, 毕金莲, 姚立勇, 孙国忠, 周志强, 何青, 孙云. 电沉积Cu-In-Ga金属预制层的硒硫化研究. 物理学报, 2013, 62(23): 238801. doi: 10.7498/aps.62.238801
    [13] 何静婧, 刘玮, 李志国, 李博研, 韩安军, 李光旻, 张超, 张毅, 孙云. 低温生长Cu(InGa)Se2薄膜吸收层的掺钠工艺研究. 物理学报, 2012, 61(19): 198801. doi: 10.7498/aps.61.198801
    [14] 赖延清, 匡三双, 刘芳洋, 张治安, 刘军, 李劼, 刘业翔. 电沉积Cu(In, Ga)Se2预置层硫化退火制备Cu(In, Ga)(Se, S)2薄膜及表征. 物理学报, 2010, 59(2): 1196-1201. doi: 10.7498/aps.59.1196
    [15] 敖建平, 杨亮, 闫礼, 孙国忠, 何青, 周志强, 孙云. 硒化前后电沉积贫铜和富铜的Cu(In1-xGax)Se2薄膜成分及结构的比较. 物理学报, 2009, 58(3): 1870-1878. doi: 10.7498/aps.58.1870
    [16] 王叶安, 秦福文, 吴东江, 吴爱民, 徐 茵, 顾 彪. 基于电子回旋共振-等离子体增强金属有机物化学气相沉积技术生长GaMnN稀磁半导体的研究. 物理学报, 2008, 57(1): 508-513. doi: 10.7498/aps.57.508
    [17] 李 微, 敖建平, 何 青, 刘芳芳, 李凤岩, 李长健, 孙 云. 衬底对Cu(In, Ga)Se2薄膜织构的影响. 物理学报, 2007, 56(8): 5009-5012. doi: 10.7498/aps.56.5009
    [18] 谷建峰, 付伟佳, 刘 明, 刘志文, 马春雨, 张庆瑜. 电化学沉积高c轴取向ZnO薄膜及其光学性能分析. 物理学报, 2007, 56(10): 5979-5985. doi: 10.7498/aps.56.5979
    [19] 徐炜炜, 戴松元, 方霞琴, 胡林华, 孔凡太, 潘 旭, 王孔嘉. 电沉积处理与染料敏化纳米薄膜太阳电池的优化. 物理学报, 2005, 54(12): 5943-5948. doi: 10.7498/aps.54.5943
    [20] 辛 煜, 范叔平, 狄国庆, 沈明荣, 甘肇强. 微波等离子体化学汽相沉积法沉积CNx膜的研究. 物理学报, 1998, 47(1): 154-159. doi: 10.7498/aps.47.154
计量
  • 文章访问数:  4821
  • PDF下载量:  725
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-09-26
  • 修回日期:  2012-11-28
  • 刊出日期:  2013-04-05

/

返回文章
返回