搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种与标准单模光纤高适配的低弯曲损耗光子晶体光纤

盛新志 娄淑琴 尹国路 鹿文亮 王鑫

引用本文:
Citation:

一种与标准单模光纤高适配的低弯曲损耗光子晶体光纤

盛新志, 娄淑琴, 尹国路, 鹿文亮, 王鑫

A high-compatibility low-bending-loss photonic crystal fiber with standard single mode fiber

Sheng Xin-Zhi, Lou Shu-Qin, Yin Guo-Lu, Lu Wen-Liang, Wang Xin
PDF
导出引用
  • 设计并研制出一种与普通单模光纤高适配的低弯曲损耗光子晶体光纤. 结构采用光纤预制棒制作工艺上易于实现的掺锗芯六孔结构. 应用间接测量方法, 对其模式、弯曲及色散特性进行了系统的评估. 在波长1550 nm处研制光纤的模场面积为79.26 μm2, 色散为21.7 ps·km-1·nm-1, 模场面积和色散特性与标准单模光纤具有高的适配性. 在光纤弯曲半径为5 mm时, 在波长1550 nm处的弯曲损耗为0.0365 dB/圈, 小于G.657B的弯曲损耗0.5 dB/圈. 研究成果为光纤到户用低弯曲损耗光纤的实用化奠定了良好的基础.
    A high-compatibility low-bending-loss photonic crystal fiber (PCF) with standard single mode fiber (SMF) is designed and manufactured successfully. From the point of the view of fiber fabrication and application, a feasible structure with a germanium-doped core surrounded by one layer of six air holes running along fiber axis is adopted in fiber design. The properties of the fabricated PCF such as modal property, bending characteristic and dispersion are systemically evaluated with indirect measurement method. Analysis results demonstrate that this fiber has a mode field area of 79.26 μm2 and dispersion of 21.7 ps·km-1·nm-1, which exhibits high compatibility with SMF. The bending loss is 0.0365 dB/turn at a wavelength of 1550 nm for a bending radius of 5 mm, which is less than the bending loss of 0.5 dB/turn of G.657B. This fiber offers an efficient way to develop the low-bending-loss fibers for the application of fiber-to-the-home.
    • 基金项目: 国家自然科学基金(批准号: 61177082, 61205074)和北京市自然科学基金(批准号: 4122063)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61177082, 61205074) and Beijing Natural Science Foundation (Grant No. 4122063).
    [1]

    Himeno K, Matsuo S, Guan N, Wada A 2005 J. Lightwave Technol. 23 3494

    [2]

    Watekar P R, Ju S, Han W 2008 Opt. Express 16 1180

    [3]

    Saitoh K, Tsuchida Y, Koshiba M 2005 Opt. Lett. 30 1779

    [4]

    Nakajima K, Hogari K, Zhou J, Tajima K, Sankawa I 2003 IEEE Photon. Technol. Lett. 15 1737

    [5]

    Li M J, Tandon P, Bookbinder D C, Bickham S R, McDermott M A, Desorcie R B, Nolan D A, Johnson J J, Lewis K A, Englebert J J 2009 J. Lightwave Technol. 27 376

    [6]

    Nakajima K, Shimizu T, Matsui T, Fukai C, Kurashima T 2010 Opt. Fiber Technol. 16 392

    [7]

    Matsui T, Nakajima K, Fukai C 2009 J. Lightwave Technol. 27 5410

    [8]

    Zhang Y N 2012 Acta Phys. Sin. 61 084213 (in Chinese) [张亚妮 2012 物理学报 61 084213]

    [9]

    Zhang L C, Hou L T, Zhou G Y 2011 Acta Phys. Sin. 60 054217 (in Chinese) [张立超, 侯蓝田, 周桂耀 2011 物理学报 60 054217]

    [10]

    Knight J C, Birks T A, Cregan R F, Russell St P, deSandre J P 1998 Electron. Lett. 34 1347

    [11]

    Olszewski J, Szpulak M, Martynkien T, Urbańczyk W, Berghmans F, Tomasz N, Thienpont H 2007 Opt. Commun. 269 261

    [12]

    Tsuchida Y, Saitoh K, Koshiba M 2005 Opt. Express 13 4770

    [13]

    Wang L W, Lou S Q, Chen W G, Li H L 2010 Chin. Phys. B 19 84209

    [14]

    Napierala M, Nasilowski T, Bereś-Pawlik E, Mergo P, Berghmans F, Thienpont H 2011 Opt. Express 19 22628

    [15]

    Guo S, Wu F, Albin S 2004 Opt. Express 12 3341

    [16]

    Boag A, Boag A, Mittra R 1994 Microwave Opt. Technol. Lett. 7 395

    [17]

    Uranus H, Hoekstra H 2004 Opt. Express 12 2795

    [18]

    White T P, McPhedran R C, de Sterks C M, Botten L C, Steel M J 2001 Opt. Lett. 26 1660

    [19]

    Matsui T, Nakajima K, Fukai C 2009 J. Lightwave Technol. 27 5410

    [20]

    Olszewski.J, Szpulak M, Urbańczyk W 2005 Opt. Express 13 6015

    [21]

    Martynkien T, Olszewski J, Szpulak M, Golojuch G, Urbanczyk W, Nasilowski T, Berghmans F, Thienpont H 2007 Opt. Express 15 13547

    [22]

    Alun J H, Peter F C 1986 J. Lightwave Technol. 4 34

  • [1]

    Himeno K, Matsuo S, Guan N, Wada A 2005 J. Lightwave Technol. 23 3494

    [2]

    Watekar P R, Ju S, Han W 2008 Opt. Express 16 1180

    [3]

    Saitoh K, Tsuchida Y, Koshiba M 2005 Opt. Lett. 30 1779

    [4]

    Nakajima K, Hogari K, Zhou J, Tajima K, Sankawa I 2003 IEEE Photon. Technol. Lett. 15 1737

    [5]

    Li M J, Tandon P, Bookbinder D C, Bickham S R, McDermott M A, Desorcie R B, Nolan D A, Johnson J J, Lewis K A, Englebert J J 2009 J. Lightwave Technol. 27 376

    [6]

    Nakajima K, Shimizu T, Matsui T, Fukai C, Kurashima T 2010 Opt. Fiber Technol. 16 392

    [7]

    Matsui T, Nakajima K, Fukai C 2009 J. Lightwave Technol. 27 5410

    [8]

    Zhang Y N 2012 Acta Phys. Sin. 61 084213 (in Chinese) [张亚妮 2012 物理学报 61 084213]

    [9]

    Zhang L C, Hou L T, Zhou G Y 2011 Acta Phys. Sin. 60 054217 (in Chinese) [张立超, 侯蓝田, 周桂耀 2011 物理学报 60 054217]

    [10]

    Knight J C, Birks T A, Cregan R F, Russell St P, deSandre J P 1998 Electron. Lett. 34 1347

    [11]

    Olszewski J, Szpulak M, Martynkien T, Urbańczyk W, Berghmans F, Tomasz N, Thienpont H 2007 Opt. Commun. 269 261

    [12]

    Tsuchida Y, Saitoh K, Koshiba M 2005 Opt. Express 13 4770

    [13]

    Wang L W, Lou S Q, Chen W G, Li H L 2010 Chin. Phys. B 19 84209

    [14]

    Napierala M, Nasilowski T, Bereś-Pawlik E, Mergo P, Berghmans F, Thienpont H 2011 Opt. Express 19 22628

    [15]

    Guo S, Wu F, Albin S 2004 Opt. Express 12 3341

    [16]

    Boag A, Boag A, Mittra R 1994 Microwave Opt. Technol. Lett. 7 395

    [17]

    Uranus H, Hoekstra H 2004 Opt. Express 12 2795

    [18]

    White T P, McPhedran R C, de Sterks C M, Botten L C, Steel M J 2001 Opt. Lett. 26 1660

    [19]

    Matsui T, Nakajima K, Fukai C 2009 J. Lightwave Technol. 27 5410

    [20]

    Olszewski.J, Szpulak M, Urbańczyk W 2005 Opt. Express 13 6015

    [21]

    Martynkien T, Olszewski J, Szpulak M, Golojuch G, Urbanczyk W, Nasilowski T, Berghmans F, Thienpont H 2007 Opt. Express 15 13547

    [22]

    Alun J H, Peter F C 1986 J. Lightwave Technol. 4 34

计量
  • 文章访问数:  4650
  • PDF下载量:  934
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-08-28
  • 修回日期:  2013-01-22
  • 刊出日期:  2013-05-05

/

返回文章
返回