搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用拉曼光谱测量GeSbSe玻璃的热导率

甘渝林 王丽 苏雪琼 许思维 孔乐 沈祥

引用本文:
Citation:

用拉曼光谱测量GeSbSe玻璃的热导率

甘渝林, 王丽, 苏雪琼, 许思维, 孔乐, 沈祥

Thermal conductivity measurement on GeSbSe glasses:Raman scattering spectra method

Gan Yu-Lin, Wang Li, Su Xue-Qiong, Xu Si-Wei, Kong Le, Shen Xiang
PDF
导出引用
  • 本文根据斯托克斯和反斯托克斯拉曼光谱散射截面的不同,测量样品表面温度,并进一步提出了一种测量材料热导率的新方法. 利用该方法系统地研究了GexSb10Se90-x,GexSb15Se85-x和 GexSb20Se80-x三个系列的GeSbSe玻璃的热导率,从而证明该方法的实用性和可靠性,同时分析其化学组分对材料结构和热导率的影响. 该方法测量获得的热导率与文献报道的热导率基本一致,表明拉曼光谱法测试材料的热导率简单、快捷,是一种实用的测量材料热导率的方法. 结果表明每个系列硫系玻璃的热导率随着Ge浓度的增加而增加,在等于或近似化学配比组分处,硫系玻璃的热导率达到最大值,然后随着Ge含量的继续增加而降低. 认为GeSbSe硫系玻璃热导率表现出的阈值现象归因于GeSbSe三元网络结构分离为二元结构的结果.
    We have measured the temperature raised by laser irradiation on the basis of difference between Stokes and anti-Stokes Raman scattering cross-sections, and further estimated the thermal conductivity of the material. GeSbSe glasses with compositions of GexSb10Se90-x, GexSb15Se85-x, and GexSb20Se80-x are systematically studied with the aim of verifying the practicability of the new method and understanding the role of chemical composition in determining the structure and thermal conductivity of the glasses. All of the results are in agreement with those reported on thermal conductivity measured by different methods in the literature. It is indicated that Raman scattering method is convenient and efficient to measure thermal conductivity of the materials. For each group of glasses, it is found that the thermal conductivity increases with increasing Ge concentration up to a transition point corresponding to the glass with chemically stoichiometric composition. We ascribe the threshold behaviour of the thermal conductivity to the demixing of the structural units from glass network.
    • 基金项目: 北京市教育委员会科技计划重点项目(批准号:Kz2011100050010)和国家自然科学基金(批准号:11274031)资助的课题.
    • Funds: Project supported by the Science and Technology Project of Beijing Municipal Education Commission, China (Grant No.Kz2011100050010), and the National Natural Science foundation of China (Grant No.11274031).
    [1]

    Frerichs R 1953 Journal of the Optical Society of America 43 1153

    [2]

    Eggleton B J, Davies B L, Richardson K 2011 Nature Photonics 5 141-148

    [3]

    Dai S X, Yu X Y, Zhang W, Lin C G, Song B A, Wang X S, Liu Y X, Xu T F, Nie Q H 2011 Laser & Optoelectronics Progress 48 0906 02 (in Chinese) [戴世勋, 於杏燕, 张巍, 林常规, 宋宝安, 王训四, 刘永兴, 徐铁峰, 聂秋华 2011 激光与光电子学进展 48 090602]

    [4]

    Xue J Q, Xu M, Gong Y Q, Zhao X J 2003 Optoelectronic Technology & Information 16 28 (in Chinese) [薛建强, 徐曼, 龚跃球, 赵修建 2003 光电子技术与信息 16 28]

    [5]

    Cahill D G 1990 Rev. Sci. Instrum. 61 802

    [6]

    Feng P, Wang T H 2003 Acta Phys. Sin. 52 2249 (in Chinese)[丰平, 王太宏 2003 物理学报 52 2249]

    [7]

    Gaal P S, Thermitus M A, Stroe D E 2004 J. Therm. Anal. Cal. 78 185-189

    [8]

    Li W Z, Wang J 2012 Acta Phys. Sin. 61 114401 (in Chinese)[黎威志, 王军 2012 物理学报 61 114401]

    [9]

    Fang Z Q, Hu M, Zhang W, Zhang X R 2008 Acta Phys. Sin. 57 103 (in Chinese)[房振乾, 胡明, 张伟, 张绪瑞 2008 物理学报 57 103]

    [10]

    Hu P, Chen Z S 2009 Calorimetry and measurement of thermal properties pp96-155 (in Chinese) [胡芃, 陈则韶 2009 量热技术和热物性测定(第2版) (北京: 中国科学技术大学出版社) 第96–155 页]

    [11]

    Tritt T M 2004 Thermal Conductivity Theory, Properties, and Applications (New York: Kluwer Academic/Plenum Publishers)

    [12]

    Nonnenmacher M, Wickramasinghe H K 1992 Appl. Phys. Lett. 61 168

    [13]

    Wang R P, Zhou G W, Liu Y L, Pan S H, Zhang H Z, Yu D P, Zhang Z 2000 Phys. Rev. B 61 16827

    [14]

    Cheng G X 2008 Raman and Brillouin Scattering (Beijing: Science Press) (in Chinese) [程光煦 2008 拉曼布里渊散射(第2版) (北京: 科学出版社)]

    [15]

    Kostadinova O 2009 Ph. D. Dissertation (Bulgarian Academy of Sciences)

    [16]

    Uemura O, Kameda Y, Kokai S, Satow T 1990 J. Non-Cryst. Solids 117 219

    [17]

    Wei W H, Wang R P, Shen X, Fang L, Davies B L 2013 J. Phys. Chem. C 117 16571

    [18]

    Wang R P, Smith A, Prasad A, Choi D Y, Davies B L 2009 J. Appl. Phys. 106 043520

    [19]

    Wu T Y, Lai W S, Fu B Q 2013 Chin. Phys. B 22 076601

    [20]

    Huang C L, Feng Y H, Zhang X X, Li J, Wang G, Chou A H 2013 Acta Phys. Sin. 62 026501 (in Chinese)[黄丛亮, 冯妍卉, 张欣欣, 李静, 王戈, 侴爱辉 2013 物理学报 62 026501]

    [21]

    Štoura L, Vasko A, Srb I, Musil C, Štrba F 1968 Czech. J. Phys. B 18 1067

    [22]

    Afifi M A, Labib H H, EI-Fazary M H, Fadel M 1992 Appl. Phys. A. 55 167

    [23]

    Srinivasan A, Madhusoodanan K N, Gopal E S R 1992 Phys. Rev. B 45 8112

    [24]

    Micoulaut M, Naumis G G 1999 Europhys. Lett. 47 568

    [25]

    Mahadevan S, Giridhar A 1992 J. Non-Cryst. Solids 143 52

    [26]

    P Boolchand, Chen P. Vempati U 2009 J. Non-Cryst. Solids 355 1773

    [27]

    Wang R P, Smith A, Luther-Davies B, Kokkonen H, Jackson I 2009 J. Appl. Phys. 105 056109

    [28]

    Wang T, Wei W H, Shen X, Wang R P, Luther-Davies B, Jackson I 2013 J. Phys. D: Appl. Phys. 46 165302

    [29]

    Wang R P, Luther-Davies B 2014 Amorphous chalcogenides: Advances and Applications (Singapore) pp97-141

  • [1]

    Frerichs R 1953 Journal of the Optical Society of America 43 1153

    [2]

    Eggleton B J, Davies B L, Richardson K 2011 Nature Photonics 5 141-148

    [3]

    Dai S X, Yu X Y, Zhang W, Lin C G, Song B A, Wang X S, Liu Y X, Xu T F, Nie Q H 2011 Laser & Optoelectronics Progress 48 0906 02 (in Chinese) [戴世勋, 於杏燕, 张巍, 林常规, 宋宝安, 王训四, 刘永兴, 徐铁峰, 聂秋华 2011 激光与光电子学进展 48 090602]

    [4]

    Xue J Q, Xu M, Gong Y Q, Zhao X J 2003 Optoelectronic Technology & Information 16 28 (in Chinese) [薛建强, 徐曼, 龚跃球, 赵修建 2003 光电子技术与信息 16 28]

    [5]

    Cahill D G 1990 Rev. Sci. Instrum. 61 802

    [6]

    Feng P, Wang T H 2003 Acta Phys. Sin. 52 2249 (in Chinese)[丰平, 王太宏 2003 物理学报 52 2249]

    [7]

    Gaal P S, Thermitus M A, Stroe D E 2004 J. Therm. Anal. Cal. 78 185-189

    [8]

    Li W Z, Wang J 2012 Acta Phys. Sin. 61 114401 (in Chinese)[黎威志, 王军 2012 物理学报 61 114401]

    [9]

    Fang Z Q, Hu M, Zhang W, Zhang X R 2008 Acta Phys. Sin. 57 103 (in Chinese)[房振乾, 胡明, 张伟, 张绪瑞 2008 物理学报 57 103]

    [10]

    Hu P, Chen Z S 2009 Calorimetry and measurement of thermal properties pp96-155 (in Chinese) [胡芃, 陈则韶 2009 量热技术和热物性测定(第2版) (北京: 中国科学技术大学出版社) 第96–155 页]

    [11]

    Tritt T M 2004 Thermal Conductivity Theory, Properties, and Applications (New York: Kluwer Academic/Plenum Publishers)

    [12]

    Nonnenmacher M, Wickramasinghe H K 1992 Appl. Phys. Lett. 61 168

    [13]

    Wang R P, Zhou G W, Liu Y L, Pan S H, Zhang H Z, Yu D P, Zhang Z 2000 Phys. Rev. B 61 16827

    [14]

    Cheng G X 2008 Raman and Brillouin Scattering (Beijing: Science Press) (in Chinese) [程光煦 2008 拉曼布里渊散射(第2版) (北京: 科学出版社)]

    [15]

    Kostadinova O 2009 Ph. D. Dissertation (Bulgarian Academy of Sciences)

    [16]

    Uemura O, Kameda Y, Kokai S, Satow T 1990 J. Non-Cryst. Solids 117 219

    [17]

    Wei W H, Wang R P, Shen X, Fang L, Davies B L 2013 J. Phys. Chem. C 117 16571

    [18]

    Wang R P, Smith A, Prasad A, Choi D Y, Davies B L 2009 J. Appl. Phys. 106 043520

    [19]

    Wu T Y, Lai W S, Fu B Q 2013 Chin. Phys. B 22 076601

    [20]

    Huang C L, Feng Y H, Zhang X X, Li J, Wang G, Chou A H 2013 Acta Phys. Sin. 62 026501 (in Chinese)[黄丛亮, 冯妍卉, 张欣欣, 李静, 王戈, 侴爱辉 2013 物理学报 62 026501]

    [21]

    Štoura L, Vasko A, Srb I, Musil C, Štrba F 1968 Czech. J. Phys. B 18 1067

    [22]

    Afifi M A, Labib H H, EI-Fazary M H, Fadel M 1992 Appl. Phys. A. 55 167

    [23]

    Srinivasan A, Madhusoodanan K N, Gopal E S R 1992 Phys. Rev. B 45 8112

    [24]

    Micoulaut M, Naumis G G 1999 Europhys. Lett. 47 568

    [25]

    Mahadevan S, Giridhar A 1992 J. Non-Cryst. Solids 143 52

    [26]

    P Boolchand, Chen P. Vempati U 2009 J. Non-Cryst. Solids 355 1773

    [27]

    Wang R P, Smith A, Luther-Davies B, Kokkonen H, Jackson I 2009 J. Appl. Phys. 105 056109

    [28]

    Wang T, Wei W H, Shen X, Wang R P, Luther-Davies B, Jackson I 2013 J. Phys. D: Appl. Phys. 46 165302

    [29]

    Wang R P, Luther-Davies B 2014 Amorphous chalcogenides: Advances and Applications (Singapore) pp97-141

  • [1] 许思维, 王训四, 沈祥. 元素取代对Ge-As(Sb)-Se玻璃转变阈值行为的影响. 物理学报, 2024, 73(5): 057102. doi: 10.7498/aps.73.20231797
    [2] 郑建军, 张丽萍. 单层Cu2X(X=S,Se):具有低晶格热导率的优秀热电材料. 物理学报, 2023, 0(0): 0-0. doi: 10.7498/aps.72.20220015
    [3] 许思维, 王训四, 沈祥. 结合高分辨率X射线光电子能谱和拉曼散射研究GexGa8S92–x玻璃结构. 物理学报, 2023, 72(1): 017101. doi: 10.7498/aps.72.20221653
    [4] 方文玉, 陈粤, 叶盼, 魏皓然, 肖兴林, 黎明锴, AhujaRajeev, 何云斌. 二维XO2 (X = Ni, Pd, Pt)弹性、电子结构和热导率. 物理学报, 2021, 70(24): 246301. doi: 10.7498/aps.70.20211015
    [5] 杨安平, 王雨伟, 张少伟, 李兴隆, 杨志杰, 李耀程, 杨志勇. Ge-Sb-Se硫系玻璃的折射率和热光系数. 物理学报, 2019, 68(1): 017801. doi: 10.7498/aps.68.20181869
    [6] 吴波, 赵浙明, 王训四, 江岭, 密楠, 潘章豪, 张培晴, 刘自军, 聂秋华, 戴世勋. Te基远红外硫系玻璃光纤的制备及性能分析. 物理学报, 2017, 66(13): 134208. doi: 10.7498/aps.66.134208
    [7] 赵浙明, 吴波, 刘雅洁, 江岭, 密楠, 王训四, 刘自军, 刘硕, 潘章豪, 聂秋华, 戴世勋. 低损耗Ge-As-Se-Te硫系玻璃远红外光纤的性能分析. 物理学报, 2016, 65(12): 124205. doi: 10.7498/aps.65.124205
    [8] 杨艳, 陈云翔, 刘永华, 芮扬, 曹烽燕, 杨安平, 祖成奎, 杨志勇. Ge-As-S硫系玻璃的结构与性能调控. 物理学报, 2016, 65(12): 127801. doi: 10.7498/aps.65.127801
    [9] 徐航, 彭雪峰, 戴世勋, 徐栋, 张培晴, 许银生, 李杏, 聂秋华. Ge-Sb-Se硫系玻璃拉曼增益特性研究. 物理学报, 2016, 65(15): 154207. doi: 10.7498/aps.65.154207
    [10] 林常规, 翟素敏, 李卓斌, 屈国顺, 顾少轩, 陶海征, 戴世勋. GeS2-In2S3硫系玻璃的物化性质与晶化行为研究. 物理学报, 2015, 64(5): 054208. doi: 10.7498/aps.64.054208
    [11] 许思维, 王丽, 沈祥. GexSb20Se80-x玻璃的拉曼光谱和X射线光电子能谱. 物理学报, 2015, 64(22): 223302. doi: 10.7498/aps.64.223302
    [12] 杨志清, 王飞利, 林常规. 20GeS2·80Sb2S3硫系玻璃的析晶行为及动力学机理研究. 物理学报, 2013, 62(18): 184211. doi: 10.7498/aps.62.184211
    [13] 易昌申, 戴世勋, 张培晴, 王训四, 沈祥, 徐铁峰, 聂秋华. 新型单模大模场红外硫系玻璃光子晶体光纤设计研究. 物理学报, 2013, 62(8): 084206. doi: 10.7498/aps.62.084206
    [14] 李威, 冯妍卉, 唐晶晶, 张欣欣. 碳纳米管Y形分子结的热导率与热整流现象. 物理学报, 2013, 62(7): 076107. doi: 10.7498/aps.62.076107
    [15] 李静, 冯妍卉, 张欣欣, 黄丛亮, 杨穆. 考虑界面散射的金属纳米线热导率修正. 物理学报, 2013, 62(18): 186501. doi: 10.7498/aps.62.186501
    [16] 林常规, 李卓斌, 覃海娇, 倪文豪, 李燕颖, 戴世勋. GeS2-Ga2S3-CsI硫系玻璃的析晶行为及其组成依赖研究. 物理学报, 2012, 61(15): 154212. doi: 10.7498/aps.61.154212
    [17] 周亚训, 於杏燕, 徐星辰, 戴世勋. 掺铒硫系玻璃的制备及其微结构光纤的中红外信号放大特性研究. 物理学报, 2012, 61(15): 157701. doi: 10.7498/aps.61.157701
    [18] 刘硕, 李曙光, 付博, 周洪松, 冯荣普. 中红外高保偏硫系玻璃双芯光子晶体光纤耦合特性研究. 物理学报, 2011, 60(3): 034217. doi: 10.7498/aps.60.034217
    [19] 聂秋华, 王国祥, 王训四, 徐铁峰, 戴世勋, 沈祥. Ga对新型远红外Te基硫系玻璃光学性能的影响. 物理学报, 2010, 59(11): 7949-7955. doi: 10.7498/aps.59.7949
    [20] 张纪才, 戴伦, 秦国刚, 应丽贞, 赵新生. 离子注入GaN的拉曼散射研究. 物理学报, 2002, 51(3): 629-634. doi: 10.7498/aps.51.629
计量
  • 文章访问数:  6926
  • PDF下载量:  751
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-01-22
  • 修回日期:  2014-03-20
  • 刊出日期:  2014-07-05

/

返回文章
返回