搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光立体成形中熔池凝固微观组织的元胞自动机模拟

魏雷 林鑫 王猛 黄卫东

引用本文:
Citation:

激光立体成形中熔池凝固微观组织的元胞自动机模拟

魏雷, 林鑫, 王猛, 黄卫东

Cellular automaton simulation of the molten pool of laser solid forming process

Wei Lei, Lin Xin, Wang Meng, Huang Wei-Dong
PDF
导出引用
  • 本文通过采用自适应网格技术, 将激光立体成形的宏观温度场模型和凝固微观组织的低网格各向异性元胞自动机模型(cellular automaton, CA)结合, 建立了适用于激光立体成形的集成数值模型. 模型包括基材的温度场分布, 熔池形貌和熔凝过程的凝固微观组织. 模拟了激光扫描速度为15 mm/s时, 激光作用在Fe-C单晶基材上形成熔池的形状以及熔池内凝固微观组织. 计算结果揭示了熔池内固液界面从平界面失稳到胞\枝晶的非稳态凝固过程, 并得到了平界面组织形成的白亮带. 白亮带上方形成了外延生长的枝晶列.
    A two-dimensional multiscale model is presented for simulating laser melting process, which is the same as laser solid forming (LSF) without the addition of metallic powders into the molten pool. The metallurgical process in molten pool is simulated, including the temperature distribution, the pool shape, and the solidification microstructure. The shape of the molten pool and the microstructure in Fe-C single crystal substrate at a laser scanning speed of 15 mm/s is simulated. Results reveal the instability from planar interface to cell\ dendrite morphologies in the molten pool. At the bottom of the molten pool, the growth morphology is planar interface, which is also called bonding zone. Epitaxial dendrite arrays can be seen to grow above the bonding zone.
    • 基金项目: 中国博士后科学基金(批准号: 2013M540771)、国家自然科学基金(批准号: 51271213), 国家重点基础研究发展计划(973) (批准号: 2011CB610402)、国家高技术研究发展计划(863计划) (批准号: 2013AA031103)和高等学校博士学科点专项科研基金(批准号: 20116102110016)资助的课题.
    • Funds: Project supported by the China Postdoctoral Science Foundation (Drant No. 2013M540771), the National Natural Science Foundation of China (Grant No. 51271213), the National Basic Research Program of China (Grant No. 2011CB610402), the National High Technology Research and Development Program of China (Grant No. 2013AA031103), and the Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant No. 20116102110016).
    [1]

    Keicher D M, Smugeresk y J E, Romero J A, Griffith M L, Harwell L D 1997 SPIE 2293 91

    [2]

    Keicher D M, Smugeresky J E 1997 JOM 49 51

    [3]

    Magee J, Watkins K G, Steen W M 1998 Journal of Laser Application 10 235240

    [4]

    Lin X, Yue T M, Yang H O, Huang W D 2006 Acta Mater. 54 1901

    [5]

    Gremaud M, Wagmiere J D, Zryd A, Kurz W 1996 Surface Engineering 12 251

    [6]

    Gaumann M, Henry S, Cleton F, Wagniere J D, Kurz W 1999 Materials Science & Engineering A 271A 232

    [7]

    Tseng A A, Lee M, Zhao 1998 Proceeding s of the Third Pacific Rim International Conference on Advanced Materials and Processing, Honolulu, Hawaii, USA, July 12-16, 1998 p1611-1618

    [8]

    Li Y M, Huang W D, Feng L P, Chen J 1999 Acta Metall. Sinica (English Letters) 12 1025

    [9]

    Li Y M 2001 Ph. D. Dissertation (Xi'an: Northwestern Polytechnical University) (in Chinese) [李延民 2001 博士学位论文(西安: 西北工业大学)]

    [10]

    Wang L, Felicelli S 2006 Mater. Sci. Eng. A 435–436 625

    [11]

    Peyre P, Aubry P, Fabbro R, Neveu R, Longuet A 2008 J. Phys. D: Appl. Phys. 41 025403

    [12]

    Brown S, Song H 1992 J. Eng. Ind. Trans. ASME 114 441

    [13]

    Fallah V, Alimardani M, Corbin SF, Khajepour A 2011 Comput. Mater. Sci. 50 2124

    [14]

    Fallah V, Amoorezaei M, Provatas N, Corbin S F, Khajepour A 2012 Acta Mater. 60 1633

    [15]

    Yin H, Felicelli S D 2010 Acta Mater. 58 1455

    [16]

    Nastac L 1999 Acta Mater. 47 4253

    [17]

    Sanchez LB, Stefanescu D M 2004 Metall. Mater. Trans. 35 A2471

    [18]

    Zhu M F, Stefanescu D M 2007 Acta Mater. 55 1741

    [19]

    Wei L, Lin X, Wang M, Huang W D 2011 Appl. Phys. A 103 123

    [20]

    Wei L, Lin X, Wang M, Huang W D 2012 Comput. Mater. Sci. 54 66.

    [21]

    Wei L, Lin X, Wang M, Huang WD 2012 Physica B 407 2471

    [22]

    Wei L, Lin X, Wang M, Huang W D 2012 Acta Phys. Sin. 61 098104 (in Chinese) [魏雷, 林鑫, 王猛, 黄卫东 2012 物理学报 61 098104]

    [23]

    Zhang Y P, Lin X, Wei L 2012 Acta Phys. Sin. 61 228106 (in Chinese) [张云鹏, 林鑫, 魏雷等 2012 物理学报 61 228106]

    [24]

    Wang L L, Wang Z J, Lin X, Wang M, Huang W D 2012 Chin. Phys. B 21 066801

    [25]

    Wang Z J, Wang J C, Yang G C 2010 Chin. Phys. B 19 017305

    [26]

    Gueyffier D, Li J, Nadim A, Scardovelli R, Zaleski S 1999 J. Comput. Phys. 152 423

    [27]

    Zhang K, Wang S, Liu W, Shang X 2014 Materials & Design 55 104

  • [1]

    Keicher D M, Smugeresk y J E, Romero J A, Griffith M L, Harwell L D 1997 SPIE 2293 91

    [2]

    Keicher D M, Smugeresky J E 1997 JOM 49 51

    [3]

    Magee J, Watkins K G, Steen W M 1998 Journal of Laser Application 10 235240

    [4]

    Lin X, Yue T M, Yang H O, Huang W D 2006 Acta Mater. 54 1901

    [5]

    Gremaud M, Wagmiere J D, Zryd A, Kurz W 1996 Surface Engineering 12 251

    [6]

    Gaumann M, Henry S, Cleton F, Wagniere J D, Kurz W 1999 Materials Science & Engineering A 271A 232

    [7]

    Tseng A A, Lee M, Zhao 1998 Proceeding s of the Third Pacific Rim International Conference on Advanced Materials and Processing, Honolulu, Hawaii, USA, July 12-16, 1998 p1611-1618

    [8]

    Li Y M, Huang W D, Feng L P, Chen J 1999 Acta Metall. Sinica (English Letters) 12 1025

    [9]

    Li Y M 2001 Ph. D. Dissertation (Xi'an: Northwestern Polytechnical University) (in Chinese) [李延民 2001 博士学位论文(西安: 西北工业大学)]

    [10]

    Wang L, Felicelli S 2006 Mater. Sci. Eng. A 435–436 625

    [11]

    Peyre P, Aubry P, Fabbro R, Neveu R, Longuet A 2008 J. Phys. D: Appl. Phys. 41 025403

    [12]

    Brown S, Song H 1992 J. Eng. Ind. Trans. ASME 114 441

    [13]

    Fallah V, Alimardani M, Corbin SF, Khajepour A 2011 Comput. Mater. Sci. 50 2124

    [14]

    Fallah V, Amoorezaei M, Provatas N, Corbin S F, Khajepour A 2012 Acta Mater. 60 1633

    [15]

    Yin H, Felicelli S D 2010 Acta Mater. 58 1455

    [16]

    Nastac L 1999 Acta Mater. 47 4253

    [17]

    Sanchez LB, Stefanescu D M 2004 Metall. Mater. Trans. 35 A2471

    [18]

    Zhu M F, Stefanescu D M 2007 Acta Mater. 55 1741

    [19]

    Wei L, Lin X, Wang M, Huang W D 2011 Appl. Phys. A 103 123

    [20]

    Wei L, Lin X, Wang M, Huang W D 2012 Comput. Mater. Sci. 54 66.

    [21]

    Wei L, Lin X, Wang M, Huang WD 2012 Physica B 407 2471

    [22]

    Wei L, Lin X, Wang M, Huang W D 2012 Acta Phys. Sin. 61 098104 (in Chinese) [魏雷, 林鑫, 王猛, 黄卫东 2012 物理学报 61 098104]

    [23]

    Zhang Y P, Lin X, Wei L 2012 Acta Phys. Sin. 61 228106 (in Chinese) [张云鹏, 林鑫, 魏雷等 2012 物理学报 61 228106]

    [24]

    Wang L L, Wang Z J, Lin X, Wang M, Huang W D 2012 Chin. Phys. B 21 066801

    [25]

    Wang Z J, Wang J C, Yang G C 2010 Chin. Phys. B 19 017305

    [26]

    Gueyffier D, Li J, Nadim A, Scardovelli R, Zaleski S 1999 J. Comput. Phys. 152 423

    [27]

    Zhang K, Wang S, Liu W, Shang X 2014 Materials & Design 55 104

  • [1] 梁经韵, 张莉莉, 栾悉道, 郭金林, 老松杨, 谢毓湘. 多路段元胞自动机交通流模型. 物理学报, 2017, 66(19): 194501. doi: 10.7498/aps.66.194501
    [2] 张媛媛, 林鑫, 杨海欧, 李加强, 任永明. 粉末状态对激光立体成形Zr55Cu30Al10Ni5块体非晶合金晶化行为的影响. 物理学报, 2015, 64(16): 166402. doi: 10.7498/aps.64.166402
    [3] 陈瑞, 许庆彦, 柳百成. 基于元胞自动机方法的定向凝固枝晶竞争生长数值模拟. 物理学报, 2014, 63(18): 188102. doi: 10.7498/aps.63.188102
    [4] 永贵, 黄海军, 许岩. 菱形网格的行人疏散元胞自动机模型. 物理学报, 2013, 62(1): 010506. doi: 10.7498/aps.62.010506
    [5] 温坚, 田欢欢, 康三军, 薛郁. 混合交通流元胞自动机FI模型的能耗研究. 物理学报, 2010, 59(11): 7693-7700. doi: 10.7498/aps.59.7693
    [6] 彭莉娟, 康瑞. 考虑驾驶员特性的一维元胞自动机交通流模型. 物理学报, 2009, 58(2): 830-835. doi: 10.7498/aps.58.830
    [7] 宋玉蓉, 蒋国平. 基于一维元胞自动机的复杂网络恶意软件传播研究. 物理学报, 2009, 58(9): 5911-5918. doi: 10.7498/aps.58.5911
    [8] 岳昊, 邵春福, 姚智胜. 基于元胞自动机的行人疏散流仿真研究. 物理学报, 2009, 58(7): 4523-4530. doi: 10.7498/aps.58.4523
    [9] 田欢欢, 薛郁, 康三军, 梁玉娟. 元胞自动机混合交通流模型的能耗研究. 物理学报, 2009, 58(7): 4506-4513. doi: 10.7498/aps.58.4506
    [10] 梅超群, 黄海军, 唐铁桥. 城市快速路系统的元胞自动机模型与分析. 物理学报, 2009, 58(5): 3014-3021. doi: 10.7498/aps.58.3014
    [11] 李庆定, 董力耘, 戴世强. 公交车停靠诱发交通瓶颈的元胞自动机模拟. 物理学报, 2009, 58(11): 7584-7590. doi: 10.7498/aps.58.7584
    [12] 黄锋, 邸洪双, 王广山. 用元胞自动机方法模拟镁合金薄带双辊铸轧过程凝固组织. 物理学报, 2009, 58(13): 313-S318. doi: 10.7498/aps.58.313
    [13] 单博炜, 林鑫, 魏雷, 黄卫东. 纯物质枝晶凝固的元胞自动机模型. 物理学报, 2009, 58(2): 1132-1138. doi: 10.7498/aps.58.1132
    [14] 梅超群, 黄海军, 唐铁桥. 高速公路入匝控制的一个元胞自动机模型. 物理学报, 2008, 57(8): 4786-4793. doi: 10.7498/aps.57.4786
    [15] 岳 昊, 邵春福, 陈晓明, 郝合瑞. 基于元胞自动机的对向行人交通流仿真研究. 物理学报, 2008, 57(11): 6901-6908. doi: 10.7498/aps.57.6901
    [16] 张文铸, 袁 坚, 俞 哲, 徐赞新, 山秀明. 基于元胞自动机的无线传感网络整体行为研究. 物理学报, 2008, 57(11): 6896-6900. doi: 10.7498/aps.57.6896
    [17] 郭四玲, 韦艳芳, 薛 郁. 元胞自动机交通流模型的相变特性研究. 物理学报, 2006, 55(7): 3336-3342. doi: 10.7498/aps.55.3336
    [18] 吴可非, 孔令江, 刘慕仁. 双车道元胞自动机NS和WWH交通流混合模型的研究. 物理学报, 2006, 55(12): 6275-6280. doi: 10.7498/aps.55.6275
    [19] 花 伟, 林柏梁. 考虑行车状态的一维元胞自动机交通流模型. 物理学报, 2005, 54(6): 2595-2599. doi: 10.7498/aps.54.2595
    [20] 牟勇飚, 钟诚文. 基于安全驾驶的元胞自动机交通流模型. 物理学报, 2005, 54(12): 5597-5601. doi: 10.7498/aps.54.5597
计量
  • 文章访问数:  5620
  • PDF下载量:  531
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-05-30
  • 修回日期:  2014-08-25
  • 刊出日期:  2015-01-05

/

返回文章
返回