搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于润湿阶跃的水下大尺度气膜封存方法

胡海豹 王德政 鲍路瑶 文俊 张招柱

引用本文:
Citation:

基于润湿阶跃的水下大尺度气膜封存方法

胡海豹, 王德政, 鲍路瑶, 文俊, 张招柱

Maintaining large-scale gas layer by creating wettability difference on surfaces under water

Hu Hai-Bao, Wang De-Zheng, Bao Lu-Yao, Wen Jun, Zhang Zhao-Zhu
PDF
导出引用
  • 超疏水表面水下减阻效果通常与其微结构上封存气膜的厚度和面积正相关, 且气膜尺寸越大封存越困难. 构造亲疏水相间表面, 能在壁面形成润湿阶跃, 产生约束固-气-液三相接触线移动的束缚力. 通过监测切向水流作用下, 润湿阶跃为54.8, 84.7, 103.6和144.0的亲疏水相间表面上不同面积和厚度气膜的形态发现, 厘米尺度气膜可被长时间稳定封存, 且气膜破坏的临界流速随润湿阶跃和气膜厚度的增加而升高, 随气膜迎流宽度增加而降低. 同时, 该方法封存的气膜上能产生显著滑移量, 尺寸0.6 cm0.5 cm0.15 cm的气膜上即可产生约占主流速度25%的稳定滑移速度. 期待该气膜封存方法能进一步提升超疏水表面水下减阻技术性能.
    Superhydrophobic surfaces with micro- and nano-scale structures are conducible to maintaining a gas layer where prominent slippage effect exists. It has been demonstrated that the drag reduction of superhydrophobic surface increases with growing the fraction of the gas-water interface and the rising of the thickness of gas layer. Whereas a large thick gas layer on the superhydrophobic surface collapses easily under tangential water flow. Here, we present a new method to maintain large-scale gas layer by creating hydrophilic patterns at the superhydrophobic surface, on which the binding force of air on the solid surface can be caused by wettability difference. Through testing the states of gas layer trapped on surfaces with wettability differences equal to 54.8, 84.7, 103.6 and 144.0 in apparent contact angle, respectively, the conditions of maintaining gas layer are mainly considered. We demonstrate that the critical velocity, over which the gas layer begins to collapse under the tangential water flow, is positively correlated with the thickness of the gas layer and the wettability difference between the superhydrophobic area and hydrophilic area, however, this is negatively correlated with the width of the gas layer in the crosswise direction. It is noteworthy that even a centimeter-scale gas layer can be kept steady in ~0.9 m/s through this method. Furthermore, an obvious slip velocity up to ~25% of bulk velocity is observed at the gas-water interface, through measuring the velocity profile above the 0.6 cm-long, 0.5 cm-wide and 0.15 cm-thick gas layer by using the PIV technology. We anticipate that this novel method of gas entrapment under water will effectively widen the applications of superhydrophobic surfaces for drag reduction.
      通信作者: 胡海豹, huhaibao@nwpu.edu.cn
    • 基金项目: 国家自然科学基金重点项目(批准号: 51335010, 51109178)、中央高校基本科研业务费专项资金项目(批准号: 3102015ZY017)和西北工业大学研究生创意创新种子基金(批准号: Z2016055)资助的课题.
      Corresponding author: Hu Hai-Bao, huhaibao@nwpu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51335010, 51109178), the Fundamental Research Funds for the Central Universities, China (Grant No. 3102015ZY017), and the Seed Foundation of Innovation and Creation for Graduate Students in Northwestern Polytechnical University, China (Grant No. Z2016055).
    [1]

    Bechert D W, Bruse M, Hage W, Meyer R 2000 Naturwissenschaften 87 157

    [2]

    Song D, Daniello R J, Rothstein J P 2014 Exp. Fluids 55 8

    [3]

    Song D, Song B W, Hu H B, Du X S, Zhou F 2015 Phys. Chem. Chem. Phys. 17 21

    [4]

    Hu H B, Du P, Huang S H, Wang Y 2013 Chin. Phys. B 22 074703

    [5]

    Song B W, Guo Y H, Luo Z Z, Xu X H, Wang Y 2013 Acta Phys. Sin. 62 154701 (in Chinese) [宋保维, 郭云鹤, 罗莊竹, 徐向辉, 王鹰 2013 物理学报 62 154701]

    [6]

    Tretheway D C, Meinhart C D 2002 Phys. Fluids 14 9

    [7]

    Ou J, Rothstein J P 2005 Phys. Fluids 17 10

    [8]

    Busse A, Sandham N D, McHale G, Newton M I 2013 J. Fluid Mech. 727 488

    [9]

    Kwon B H, Kim H H, Jeon H J, Kim M C, Lee I, Chun S, Go J S 2014 Exp. Fluids 55 1722

    [10]

    Samaha M A, Tafreshi H V, Gad-el-Hak M 2011 Phys. Fluids 23 012001

    [11]

    Jagdish B N, Brandon T Z X, Kwee T J, Dev A K 2014 J. Ship Res. 58 30

    [12]

    Song B W, Ren F, Hu H B, Guo Y H 2014 Acta Phys. Sin. 63 054708 (in Chinese) [宋保维, 任峰, 胡海豹, 郭云鹤 2014 物理学报 63 054708]

    [13]

    Wang B, Wang J D, Chen D R 2014 Acta Phys. Sin. 63 074702 (in Chinese) [王宝, 汪家道, 陈大融 2014 物理学报 63 074702]

    [14]

    McHale G 2007 Langmuir 23 15

    [15]

    Furmidge C G L 1962 J. Colloid Sci. 17 309

  • [1]

    Bechert D W, Bruse M, Hage W, Meyer R 2000 Naturwissenschaften 87 157

    [2]

    Song D, Daniello R J, Rothstein J P 2014 Exp. Fluids 55 8

    [3]

    Song D, Song B W, Hu H B, Du X S, Zhou F 2015 Phys. Chem. Chem. Phys. 17 21

    [4]

    Hu H B, Du P, Huang S H, Wang Y 2013 Chin. Phys. B 22 074703

    [5]

    Song B W, Guo Y H, Luo Z Z, Xu X H, Wang Y 2013 Acta Phys. Sin. 62 154701 (in Chinese) [宋保维, 郭云鹤, 罗莊竹, 徐向辉, 王鹰 2013 物理学报 62 154701]

    [6]

    Tretheway D C, Meinhart C D 2002 Phys. Fluids 14 9

    [7]

    Ou J, Rothstein J P 2005 Phys. Fluids 17 10

    [8]

    Busse A, Sandham N D, McHale G, Newton M I 2013 J. Fluid Mech. 727 488

    [9]

    Kwon B H, Kim H H, Jeon H J, Kim M C, Lee I, Chun S, Go J S 2014 Exp. Fluids 55 1722

    [10]

    Samaha M A, Tafreshi H V, Gad-el-Hak M 2011 Phys. Fluids 23 012001

    [11]

    Jagdish B N, Brandon T Z X, Kwee T J, Dev A K 2014 J. Ship Res. 58 30

    [12]

    Song B W, Ren F, Hu H B, Guo Y H 2014 Acta Phys. Sin. 63 054708 (in Chinese) [宋保维, 任峰, 胡海豹, 郭云鹤 2014 物理学报 63 054708]

    [13]

    Wang B, Wang J D, Chen D R 2014 Acta Phys. Sin. 63 074702 (in Chinese) [王宝, 汪家道, 陈大融 2014 物理学报 63 074702]

    [14]

    McHale G 2007 Langmuir 23 15

    [15]

    Furmidge C G L 1962 J. Colloid Sci. 17 309

计量
  • 文章访问数:  5416
  • PDF下载量:  259
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-18
  • 修回日期:  2016-04-19
  • 刊出日期:  2016-07-05

/

返回文章
返回