搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于可调谐半导体激光器吸收光谱的高灵敏度甲烷浓度遥测技术

丁武文 孙利群 衣路英

引用本文:
Citation:

基于可调谐半导体激光器吸收光谱的高灵敏度甲烷浓度遥测技术

丁武文, 孙利群, 衣路英

High sensitive scheme for methane remote sensor based on tunable diode laser absorption spectroscopy

Ding Wu-Wen, Sun Li-Qun, Yi Lu-Ying
PDF
导出引用
  • 讨论了一种新的高灵敏度甲烷遥测方法,利用可调谐激光二极管的调制光谱技术扫描甲烷的吸收峰,通过在测量光路中插入参考气池,增强低浓度情况下的吸收峰辨识能力,以提高甲烷浓度遥测信号的信噪比.此外,可以将激光器的中心波长锁定至气体吸收峰的峰值位置从而使仪器工作于吸收峰锁定模式,进行甲烷浓度的连续监测.实验结果表明,在测量距离分别为10 m和20 m时,周围环境中的甲烷积分浓度探测极限可以分别达到5 ppmm和16 ppmm.在吸收峰锁定工作模式下,系统在37 m距离处具有22 ppmm的检出限,并可以监测甲烷浓度的快速变化.
    Methane is an important raw material for various petrochemicals in industrial fields and as also a clean fuel in daily life. However, as an inflammable and explosive material, methane leak can lead to disastrous consequences such as fire and explosion. Furthermore, as a kind of greenhouse gas, methane has stronger influence on global warming than carbon dioxide. In this paper, we present a new high sensitive scheme for methane remote sensing, which can facilitate detection and location of methane leakage. And the 2v3 band (near 1653.7 nm) of methane is chosen as the target transition which is free from the absorption of the other molecule in atmosphere. A tunable distributed-feedback diode laser is adapted to scan across the target transition. A Fresnel lens with a diameter of 150 mm is employed to collect the ambient backscattering light from natural features such as the buildings. The first harmonic signal is used to normalize the second harmonic signal to remove the influence introduced by the unknown reflectance factor of the actual target, therefore no retro-reflector is needed. Traditional tunable diode laser absorption spectroscopy (TDLAS) method has difficulty in locating the second harmonic signal peak position in low concentration conditions because of low signal-noise-ratio (SNR). To improve the SNR especially in low concentration environment, a scheme named baseline-offset TDLAS is presented in the paper, in which a reference cell filled with standard methane sample is inserted into the measuring optical path. The reference cell can also be used to calibrate the sensor. Furthermore, the reference cell can be used to lock the central frequency of the diode laser to the absorption peak position to monitor concentration fluctuation continuously. In the peak-locking mode, the sensor demodulates the third harmonic signal as error signal to control the injection current of the laser source with PID control. Moreover, one advantage of peak-locking mode is that the measurement frequency is about two orders of magnitude higher than the traditional TDLAS method. With baseline-offset TDLAS, the remote sensor described in this paper obtains SNRs as high as 19 and 16 at a stand-off distance of 10 m and 20 m, respectively. With such a high SNR, there is no necessity for complex algorithm in absorption peak position location. By defining the standard deviation of the measuring concentration as the detection limit, experimental results show that the proposed methane remote sensor has detection limits of 5 ppm m at a distance of 10 m and 16 ppmm for 20 m, respectively, while measuring the ambient methane. In peak-locked mode, the experimental system has a detection limit of 22 ppmm at a distance up to 37 m and can monitor rapid concentration fluctuation in.
      通信作者: 孙利群, sunlq@mail.tsinghua.edu.cn
    • 基金项目: 国家重大科学仪器设备开发专项(批准号:2012YQ200182,2012YQ0901670602)资助的课题.
      Corresponding author: Sun Li-Qun, sunlq@mail.tsinghua.edu.cn
    • Funds: Project supported by the National Major Scientific Instrument and Equipment Development Project of China (Grant Nos. 2012YQ200182, 2012YQ0901670602).
    [1]

    Fukada S, Nakamura N, Monden J 2004 Int. J. Hydrogen Energ. 29 619

    [2]

    Fincke J R, Anderson R P, Hyde T, Detering B A, Wright R, Bewley R L, Haggard D C, Swank W D 2002 Plasma Chem. Plasma P. 22 105

    [3]

    Mer J L, Roger P 2001 Eur. J. Soil. Biol. 37 25

    [4]

    Iseki T, Tai H, Kimura K 2000 Meas. Sci. Technol. 11 594

    [5]

    Zhang S, Liu W Q, Zhang Y J, Ruan J, Kan R F, You K, Yu D Q, Dong J T, Han X L 2012 Acta Phys. Sin. 61 050701 (in Chinese) [张帅, 刘文清, 张玉钧, 阮俊, 阚瑞峰, 尤坤, 于殿强, 董金婷, 韩小磊 2012 物理学报 61 050701]

    [6]

    Wainner R, Green B, Allen M G, White M, Stafford-Evans J, Naper R 2002 Appl. Phys. B 75 249

    [7]

    Goldenstein C S, Mitchell Spearrin R, Hanson R K 2016 Appl. Opt. 55 479

    [8]

    Kan R F, Liu W Q, Zhang Y J, Liu J G, Dong F Z, Gao S H, Wang M, Chen J 2005 Acta Phys. Sin. 54 1927 (in Chinese) [阚瑞峰, 刘文清, 张玉钧, 刘建国, 董凤忠, 高山虎, 王敏, 陈军 2005 物理学报 54 1927]

    [9]

    Xia H H, Kan R F, Liu J G, Xu Z Y, He Y B 2016 Chin. Phys. B 25 064205

    [10]

    Rieker G B, Jeffries J B, Hanson R K, Mathur T, Gruber M R, Carter C D 2009 Proc. Combst. Inst. 32 831

    [11]

    Huang Q B, Xu X M, Li C J, Ding Y P, Cao C, Yin L Z, Ding J F 2016 Chin. Phys. B 25 114202

    [12]

    Chakraborty A L, Ruxton K, Johnstone W, Lengden M, Duffin K 2009 Opt. Express 17 9602

    [13]

    Nadezhdinskii A, Berezin A, Chernin S, Ershov O, Kutnyak V 1999 Spectrochim. Acta A 55 2083

    [14]

    Reid J, Labrie D 1981 Appl. Phys. B 26 203

    [15]

    Duffin K, McGettrick A J, Johnstone W, Stewart G, Moodie D G 2007 J. Lightwave Technol. 25 3114

    [16]

    Fernholz T, Teichert H, Ebert V 2002 Appl. Phys. B 75 229

    [17]

    Cao Y N, Wang G S, Tan T, Wang L, Mei J X, Cai T D, Gao X M 2016 Acta Phys. Sin. 65 084202 (in Chinese) [曹亚南, 王贵师, 谈图, 汪磊, 梅教旭, 蔡廷栋, 高晓明 2016 物理学报 65 084202]

    [18]

    Kluczynski P, Axner O 1999 Appl. Opt. 38 5803

    [19]

    Rothman L S, Gordon I E, Babikov Y 2013 J. Quant. Spectrosc. Ra. 130 4

    [20]

    Werle P W, Mazzinghi P, D'Amato F, Rosa M D, Maurer K, Slemr F 2004 Spectrochim. Acta A 60 1685

  • [1]

    Fukada S, Nakamura N, Monden J 2004 Int. J. Hydrogen Energ. 29 619

    [2]

    Fincke J R, Anderson R P, Hyde T, Detering B A, Wright R, Bewley R L, Haggard D C, Swank W D 2002 Plasma Chem. Plasma P. 22 105

    [3]

    Mer J L, Roger P 2001 Eur. J. Soil. Biol. 37 25

    [4]

    Iseki T, Tai H, Kimura K 2000 Meas. Sci. Technol. 11 594

    [5]

    Zhang S, Liu W Q, Zhang Y J, Ruan J, Kan R F, You K, Yu D Q, Dong J T, Han X L 2012 Acta Phys. Sin. 61 050701 (in Chinese) [张帅, 刘文清, 张玉钧, 阮俊, 阚瑞峰, 尤坤, 于殿强, 董金婷, 韩小磊 2012 物理学报 61 050701]

    [6]

    Wainner R, Green B, Allen M G, White M, Stafford-Evans J, Naper R 2002 Appl. Phys. B 75 249

    [7]

    Goldenstein C S, Mitchell Spearrin R, Hanson R K 2016 Appl. Opt. 55 479

    [8]

    Kan R F, Liu W Q, Zhang Y J, Liu J G, Dong F Z, Gao S H, Wang M, Chen J 2005 Acta Phys. Sin. 54 1927 (in Chinese) [阚瑞峰, 刘文清, 张玉钧, 刘建国, 董凤忠, 高山虎, 王敏, 陈军 2005 物理学报 54 1927]

    [9]

    Xia H H, Kan R F, Liu J G, Xu Z Y, He Y B 2016 Chin. Phys. B 25 064205

    [10]

    Rieker G B, Jeffries J B, Hanson R K, Mathur T, Gruber M R, Carter C D 2009 Proc. Combst. Inst. 32 831

    [11]

    Huang Q B, Xu X M, Li C J, Ding Y P, Cao C, Yin L Z, Ding J F 2016 Chin. Phys. B 25 114202

    [12]

    Chakraborty A L, Ruxton K, Johnstone W, Lengden M, Duffin K 2009 Opt. Express 17 9602

    [13]

    Nadezhdinskii A, Berezin A, Chernin S, Ershov O, Kutnyak V 1999 Spectrochim. Acta A 55 2083

    [14]

    Reid J, Labrie D 1981 Appl. Phys. B 26 203

    [15]

    Duffin K, McGettrick A J, Johnstone W, Stewart G, Moodie D G 2007 J. Lightwave Technol. 25 3114

    [16]

    Fernholz T, Teichert H, Ebert V 2002 Appl. Phys. B 75 229

    [17]

    Cao Y N, Wang G S, Tan T, Wang L, Mei J X, Cai T D, Gao X M 2016 Acta Phys. Sin. 65 084202 (in Chinese) [曹亚南, 王贵师, 谈图, 汪磊, 梅教旭, 蔡廷栋, 高晓明 2016 物理学报 65 084202]

    [18]

    Kluczynski P, Axner O 1999 Appl. Opt. 38 5803

    [19]

    Rothman L S, Gordon I E, Babikov Y 2013 J. Quant. Spectrosc. Ra. 130 4

    [20]

    Werle P W, Mazzinghi P, D'Amato F, Rosa M D, Maurer K, Slemr F 2004 Spectrochim. Acta A 60 1685

计量
  • 文章访问数:  6284
  • PDF下载量:  406
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-06
  • 修回日期:  2017-02-16
  • 刊出日期:  2017-05-05

/

返回文章
返回