搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

相敏式激光啁啾色散光谱技术在高吸收度情况下的应用

丁武文 孙利群

引用本文:
Citation:

相敏式激光啁啾色散光谱技术在高吸收度情况下的应用

丁武文, 孙利群

Phase sensitive chirped laser dispersion spectroscopy under high absorbance conditions

Ding Wu-Wen, Sun Li-Qun
PDF
导出引用
  • 研究了相敏式激光啁啾色散光谱法在高吸收度情况下的应用.用窄频半导体激光器作为光源,利用一工作于载波抑制模式的铌酸锂电光强度调制器调制单频激光,在单频激光两侧产生两个边频分量,并通过两边频分量产生外差干涉信号.利用外差干涉的相位波动来测量甲烷气体位于1653.7 nm附近的折射率波动,通过气体折射率与吸收系数之间的Kramers-Kronig关系计算甲烷气体浓度.传统的波长调制光谱法受限于郎伯-比尔定律,在应用于高吸收度的情况时,存在灵敏度下降的问题,甚至出现随气体浓度上升输出信号反而下降的现象.实验结果显示,相同实验条件下,波长调制光谱法的线性测量范围为38.1-1500 ppmm,线性测量的动态范围仅为16 dB;而相敏式激光啁啾色散光谱法在很大的吸收度范围内均具有线性输出,检出限低至47.3 ppmm,线性测量范围上限为174825 ppmm,具有超过35 dB的动态范围.
    A whole-fiber methane sensor under high absorbance based on phase sensitive chirped laser dispersion spectroscopy is presented in this paper. The laser source of the sensor is a tunable distributed feedback diode laser with a frequency of 1653.7 nm. A telecom-based electro-optical intensity Mach-Zehnder modulator working in carrier suppression mode is adapted to modulate the single frequency laser beam for generating a dual-sideband spectrum beside the carrier wave. Unlike previous proposed phase sensitive chirped laser dispersion spectroscopy scheme, the beatnote signal generated by the two sidebands is detected experimentally. The refractive index fluctuation around the 23 transition of methane is measured by detecting the phase variation of the dual-sideband beatnote signal through using the heterodyne interferometric method. A lock-in amplifier is employed in the phase demodulation process. By connecting the refractive index (the real part of the complex refraction index) and the absorption coefficient (the imaginary part of the complex refraction index) via Kramers-Kroning relation, the gas concentration information is retrieved from the optical dispersion measurement. Absorption-based wavelength modulation spectroscopy measures the gas concentration encoded in the optical intensity based on Beer-Lambert's law. However, the signal sensitivity of wavelength modulation spectroscopy decreases, and the signal even decreases while the gas concentration is raised in high absorbance condition, which leads to an uncertainty in concentration measurement. Experimental results demonstrate that wavelength modulation spectroscopy has better performance in low absorbance condition. The detection limit is about 38.1 ppmm. However, because the sensitivity decreases in high absorbance conditions, the upper detection limit of wavelength modulation spectroscopy is only 1500 ppmm. The dynamic range is defined through dividing the upper detection limit by the detection limit. Therefore, the wavelength modulation spectroscopy obtains a linear measurement dynamic range of 16 dB. Nevertheless, under the same experimental condition, the phase sensitive chirped laser dispersion spectroscopy has a much larger linear measurement range from 47.3 ppmm to 174825 ppmm with a dynamic range higher than 35 dB. Absorption-based gas measurement technique such as wavelength modulation spectroscopy can achieve a low detection limit by using long optical path at the expense of lower upper limit concentration. Phase sensitive chirped laser dispersion spectroscopy appears to be effective in high absorbance condition, which may be caused by high concentration or long optical path. Furthermore, by combining phase sensitive chirped laser dispersion spectroscopy and long optical path technique such as multi pass cell in sensor design, large linear measurement dynamic range and low detection limit can be obtained at the same time.
      通信作者: 孙利群, sunlq@mail.tsinghua.edu.cn
    • 基金项目: 国家重大科学仪器设备开发专项(批准号:2012YQ200182,2012YQ0901670602)资助的课题.
      Corresponding author: Sun Li-Qun, sunlq@mail.tsinghua.edu.cn
    • Funds: Project supported by the National Major Scientific Instrument and Equipment Development Project of China (Grant Nos. 2012YQ200182, 2012YQ0901670602).
    [1]

    Zhang S, Liu W Q, Zhang Y J, Ruan J, Kan R F, You K, Yu D Q, Dong J T, Han X L 2012 Acta Phys. Sin. 61 050701 (in Chinese) [张帅, 刘文清, 张玉钧, 阮俊, 阚瑞峰, 尤坤, 于殿强, 董金婷, 韩小磊 2012 物理学报 61 050701]

    [2]

    Rieker G B, Jeffries J B, Hanson R K 2009 Appl. Opt. 48 5546

    [3]

    Sanders S T, Baldwin J A, Jenkins T P, Baer D S, Hanson R K 2000 Proc. Combust. Inst. 28 587

    [4]

    Wainner R T, Green B D, Allen M G, Frish M B, White M A, Stafford-Evans J, Naper R 2002 Appl. Phys. B 75 249

    [5]

    Ding W W, Sun L Q, Yi L Y, Zhang E Y 2016 Meas. Sci. Technol. 27 085202

    [6]

    Seiter M, Sigrist M W 1999 Appl. Opt. 38 4691

    [7]

    Nadezhdinskii A, Berezin A, Chernin S, Ershov O, Kutnyak V 1999 Spectrochim. Acta A 55 2083

    [8]

    Goldenstein C S, Spearrin R M, Jeffries J B, Hanson R K 2014 Appl. Phys. B 116 705

    [9]

    Xu Z Y, Liu W Q, Liu J G, He J F, Yao L, Ruan J, Chen J Y, Li H, Yuan S, Geng H, Kan R F 2012 Acta Phys. Sin. 61 234204 (in Chinese) [许振宇, 刘文清, 刘建国, 何俊峰, 姚路, 阮俊, 陈玖英, 李晗, 袁松, 耿辉, 阚瑞峰 2012 物理学报 61 234204]

    [10]

    Philippe L C, Hanson R K 1993 Appl. Opt. 32 6090

    [11]

    Song J L, Hong Y J, Wang G Y, Pan H 2012 Acta Phys. Sin. 61 240702 (in Chinese) [宋俊玲, 洪延姬, 王广宇, 潘虎 2012 物理学报 61 240702]

    [12]

    Rieker G B, Li H, Liu X, Liu J T C, Jeffries J B, Hanson R K, Allen M G, Wehe S D, Mulhall P A, Kindle H S, Kakuho A, Sholes K R, Matsuura T, Takatani S 2007 Proc. Combust. Inst. 31 3041

    [13]

    Peng Z, Ding Y, Lu C, Li X, Zheng K 2011 Opt. Express 19 23104

    [14]

    Duffin K, Mcgettrick A J, Johnstone W, Stewart G, Moodie D G 2007 J. Lightwave Technol. 25 3114

    [15]

    Kluczynski P, Axner O 1999 Appl. Opt. 38 5803

    [16]

    Mclean A B, Mitchell C E J, Swanston D M 2002 J. Electron Spectrosc. Relat. Phenom. 69 125

    [17]

    Reid J, Labrie D 1981 Appl. Phys. B 26 203

    [18]

    Wysocki G, Weidmann D 2010 Opt. Express 18 26123

    [19]

    Nikodem M, Plant G, Wang Z, Prucnal P, Wysocki G 2013 Opt. Express 21 14649

    [20]

    Nikodem M, Weidmann D, Smith C, Wysocki G 2012 Opt. Express 20 644

    [21]

    Nikodem M, Krzempek K, Karwat R, Dudzik G, Abramski K, Wysocki G 2014 Opt. Lett. 39 4420

    [22]

    Martnmateos P, Acedo P 2014 Opt. Express 22 15143

    [23]

    Ding W, Sun L, Yi L, Ming X 2016 Appl. Opt. 55 8698

    [24]

    Velicky B 1961 Czech. J. Phys. 11 787

  • [1]

    Zhang S, Liu W Q, Zhang Y J, Ruan J, Kan R F, You K, Yu D Q, Dong J T, Han X L 2012 Acta Phys. Sin. 61 050701 (in Chinese) [张帅, 刘文清, 张玉钧, 阮俊, 阚瑞峰, 尤坤, 于殿强, 董金婷, 韩小磊 2012 物理学报 61 050701]

    [2]

    Rieker G B, Jeffries J B, Hanson R K 2009 Appl. Opt. 48 5546

    [3]

    Sanders S T, Baldwin J A, Jenkins T P, Baer D S, Hanson R K 2000 Proc. Combust. Inst. 28 587

    [4]

    Wainner R T, Green B D, Allen M G, Frish M B, White M A, Stafford-Evans J, Naper R 2002 Appl. Phys. B 75 249

    [5]

    Ding W W, Sun L Q, Yi L Y, Zhang E Y 2016 Meas. Sci. Technol. 27 085202

    [6]

    Seiter M, Sigrist M W 1999 Appl. Opt. 38 4691

    [7]

    Nadezhdinskii A, Berezin A, Chernin S, Ershov O, Kutnyak V 1999 Spectrochim. Acta A 55 2083

    [8]

    Goldenstein C S, Spearrin R M, Jeffries J B, Hanson R K 2014 Appl. Phys. B 116 705

    [9]

    Xu Z Y, Liu W Q, Liu J G, He J F, Yao L, Ruan J, Chen J Y, Li H, Yuan S, Geng H, Kan R F 2012 Acta Phys. Sin. 61 234204 (in Chinese) [许振宇, 刘文清, 刘建国, 何俊峰, 姚路, 阮俊, 陈玖英, 李晗, 袁松, 耿辉, 阚瑞峰 2012 物理学报 61 234204]

    [10]

    Philippe L C, Hanson R K 1993 Appl. Opt. 32 6090

    [11]

    Song J L, Hong Y J, Wang G Y, Pan H 2012 Acta Phys. Sin. 61 240702 (in Chinese) [宋俊玲, 洪延姬, 王广宇, 潘虎 2012 物理学报 61 240702]

    [12]

    Rieker G B, Li H, Liu X, Liu J T C, Jeffries J B, Hanson R K, Allen M G, Wehe S D, Mulhall P A, Kindle H S, Kakuho A, Sholes K R, Matsuura T, Takatani S 2007 Proc. Combust. Inst. 31 3041

    [13]

    Peng Z, Ding Y, Lu C, Li X, Zheng K 2011 Opt. Express 19 23104

    [14]

    Duffin K, Mcgettrick A J, Johnstone W, Stewart G, Moodie D G 2007 J. Lightwave Technol. 25 3114

    [15]

    Kluczynski P, Axner O 1999 Appl. Opt. 38 5803

    [16]

    Mclean A B, Mitchell C E J, Swanston D M 2002 J. Electron Spectrosc. Relat. Phenom. 69 125

    [17]

    Reid J, Labrie D 1981 Appl. Phys. B 26 203

    [18]

    Wysocki G, Weidmann D 2010 Opt. Express 18 26123

    [19]

    Nikodem M, Plant G, Wang Z, Prucnal P, Wysocki G 2013 Opt. Express 21 14649

    [20]

    Nikodem M, Weidmann D, Smith C, Wysocki G 2012 Opt. Express 20 644

    [21]

    Nikodem M, Krzempek K, Karwat R, Dudzik G, Abramski K, Wysocki G 2014 Opt. Lett. 39 4420

    [22]

    Martnmateos P, Acedo P 2014 Opt. Express 22 15143

    [23]

    Ding W, Sun L, Yi L, Ming X 2016 Appl. Opt. 55 8698

    [24]

    Velicky B 1961 Czech. J. Phys. 11 787

  • [1] 赵荣, 周宾, 刘奇, 戴明露, 汪步斌, 王一红. 基于激光吸收光谱技术的在线层析成像算法. 物理学报, 2023, 72(5): 054206. doi: 10.7498/aps.72.20221935
    [2] 李绍民, 孙利群. 基于改进波长调制光谱技术的高吸收度甲烷气体测量. 物理学报, 2023, 72(1): 010701. doi: 10.7498/aps.72.20221725
    [3] 王振, 杜艳君, 丁艳军, 李政, 彭志敏. 波长调制-直接吸收光谱(WM-DAS)在线监测大气CO浓度. 物理学报, 2022, 71(4): 044205. doi: 10.7498/aps.71.20211772
    [4] 李绍民, 孙利群. 基于改进波长调制光谱技术的高吸收度甲烷气体测量. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20221725
    [5] 王振, 杜艳君, 丁艳军, 李政, 彭志敏. 波长调制-直接吸收光谱(WM-DAS)在线监测大气CO浓度. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211772
    [6] 王振, 杜艳君, 丁艳军, 彭志敏. 基于波长调制-直接吸收光谱方法的CO分子1567 nm处谱线参数高精度标定. 物理学报, 2020, 69(6): 064204. doi: 10.7498/aps.69.20191865
    [7] 孔新新, 张文喜, 才啟胜, 伍洲, 戴玉, 相里斌. 基于多光束混合外差干涉的相位增强技术研究. 物理学报, 2020, 69(19): 190601. doi: 10.7498/aps.69.20200281
    [8] 才啟胜, 黄旻, 韩炜, 刘怡轩, 路向宁. 大孔径空间外差干涉光谱成像技术多谱段成像仿真. 物理学报, 2018, 67(23): 234205. doi: 10.7498/aps.67.20180943
    [9] 康鹏, 孙羽, 王进, 刘安雯, 胡水明. 基于高精细度光腔锁频激光的分子吸收光谱测量. 物理学报, 2018, 67(10): 104206. doi: 10.7498/aps.67.20172532
    [10] 才啟胜, 黄旻, 韩炜, 丛麟骁, 路向宁. 外差式偏振干涉成像光谱技术研究. 物理学报, 2017, 66(16): 160702. doi: 10.7498/aps.66.160702
    [11] 丁武文, 孙利群, 衣路英. 基于可调谐半导体激光器吸收光谱的高灵敏度甲烷浓度遥测技术. 物理学报, 2017, 66(10): 100702. doi: 10.7498/aps.66.100702
    [12] 廖磊, 易旺民, 杨再华, 吴冠豪. 基于合成波长法的飞秒激光外差干涉测距方法. 物理学报, 2016, 65(14): 140601. doi: 10.7498/aps.65.140601
    [13] 张书锋, 蓝丽娟, 丁艳军, 贾军伟, 彭志敏. 基于波长调制光谱技术的线宽测量理论及其应用研究. 物理学报, 2015, 64(5): 053301. doi: 10.7498/aps.64.053301
    [14] 耿辉, 刘建国, 张玉钧, 阚瑞峰, 许振宇, 姚路, 阮俊. 基于可调谐半导体激光吸收光谱的酒精蒸汽检测方法. 物理学报, 2014, 63(4): 043301. doi: 10.7498/aps.63.043301
    [15] 张志荣, 吴边, 夏滑, 庞涛, 王高旋, 孙鹏帅, 董凤忠, 王煜. 基于可调谐半导体激光吸收光谱技术的气体浓度测量温度影响修正方法研究. 物理学报, 2013, 62(23): 234204. doi: 10.7498/aps.62.234204
    [16] 张亮, 刘建国, 阚瑞峰, 刘文清, 张玉钧, 许振宇, 陈军. 基于可调谐半导体激光吸收光谱技术的高速气流流速测量方法研究. 物理学报, 2012, 61(3): 034214. doi: 10.7498/aps.61.034214
    [17] 王晓波, 马维光, 王晶晶, 肖连团, 贾锁堂. 单光子波长调制吸收光谱用于1.5 m激光器的波长锁定. 物理学报, 2012, 61(10): 104205. doi: 10.7498/aps.61.104205
    [18] 李宁, 翁春生. 非标定波长调制吸收光谱气体测量研究. 物理学报, 2011, 60(7): 070701. doi: 10.7498/aps.60.070701
    [19] 邵 杰, 高晓明, 袁怿谦, 杨 颙, 曹振松, 裴世鑫, 张为俊. 信号处理改善波长调制光谱灵敏度的实验研究. 物理学报, 2005, 54(10): 4638-4642. doi: 10.7498/aps.54.4638
    [20] 阚瑞峰, 刘文清, 张玉钧, 刘建国, 董凤忠, 高山虎, 王 敏, 陈 军. 可调谐二极管激光吸收光谱法测量环境空气中的甲烷含量. 物理学报, 2005, 54(4): 1927-1930. doi: 10.7498/aps.54.1927
计量
  • 文章访问数:  4748
  • PDF下载量:  169
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-15
  • 修回日期:  2017-03-22
  • 刊出日期:  2017-06-05

/

返回文章
返回