搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

色散效应对聚光多结太阳电池性能的影响及优化

李欣 林桂江 刘翰辉 陈松岩 刘冠洲

引用本文:
Citation:

色散效应对聚光多结太阳电池性能的影响及优化

李欣, 林桂江, 刘翰辉, 陈松岩, 刘冠洲

Effect of chromatic aberration on performance of concentrated multi-junction solar cells and their optimization

Li Xin, Lin Gui-Jiang, Liu Han-Hui, Chen Song-Yan, Liu Guan-Zhou
PDF
导出引用
  • 针对色散效应导致聚光多结太阳电池性能降低的问题,使用分布式三维等效电路模型计算高倍聚光下GaInP/GaInAs/Ge三结太阳电池的输出特性,通过分析电池各层的电压分布、暗电流分布以及横向电流分布,研究了不同电池尺寸下色散效应对电池性能影响的机理.结果表明:色散使多结太阳电池在局部区域的光生电流变得不匹配,随着电池尺寸的减小,局部区域之间失配的光生电流能够以横向电流的形式相互补偿,使电池整体的电流更加匹配,从而减小色散效应的影响.当电池芯片尺寸较大(m 20 mm20 mm)时,色散主要降低电池的短路电流密度,色散光斑下电池的效率仅相当于无色散时的94%;当电池芯片尺寸减小到m 2 mm2 mm时,短路电流密度与无色散时相等,但横向电阻降低了电池的填充因子.当电池芯片尺寸进一步减小到m 0.4 mm0.4 mm时,色散与无色散光斑下电池的各项性能几乎没有差别,效率均约为34.5%,色散效应的影响可忽略不计.
    In order to investigate the influence of the chromatic aberration on the performance of multi-junction solar cells, the performance of the triple-junction GaInP/GaInAs/Ge solar cell under high concentration condition is investigated by a three-dimensional (3D) model based on distributed circuit units. Moreover, the effects of chromatic aberration on the performance of solar cells with different sizes are studied by analyzing the distributions of the voltage, the dark current and the transverse current in each layer. It is indicated that the photo-generated current is mismatched in local region of multi-junction solar cell, which is caused by chromatic aberration. However, the mismatched photo-generated current can be compensated for by the form of transverse current, and the current can be better matched when the size of solar cell is reduced. When the size of solar cell is as big as 20 mm20 mm, the mismatched photo-generated current is large, so are the transverse current and the dark current. But the transverse current is far less than the dark current, only 12% of the mismatched photo-generated carriers can flow from the edge to the center of the cell through the transverse resistance between the sub-cells, the rest of the photo-generated carriers are lost in the form of dark current, and the cell is in a state of current mismatching. Finally, the chromatic aberration gives rise to a reduction in the short-circuit current density, and the efficiency is only 94% as high as that of non-chromatic aberration. When the size of the cell decreases, the mismatched photo-generated current and the transverse current also decrease gradually, but the dark current caused by the chromatic aberration exponentially decreases more quickly, and the ratio of the transverse current to the mismatched photo-generated current increases gradually. Therefore, the overall state of the current mismatching is alleviated, and the short-circuit current density is increased gradually. Moreover, when the size of solar cell is 2 mm2 mm, the transverse current is much larger than the dark current, 99.98% of the mismatched photo-generated carriers can be compensated for in the form of transverse current. Although the photo-generated current of the cell is mismatched in local region, the overall is still in the state of current matching. The short-circuit current densities with and without chromatic aberration are equal, but the filling factor is reduced due to the transverse resistor. When the size of cell is further reduced, the mismatched photo-generated current is very small, and the influence of the transverse series resistance decreases gradually. Therefore, the value of the filling factor gradually approaches to the value without chromatic aberration. Furthermore, the performance of solar cell with and without chromatic aberration is nearly the same when the size of solar cell is as small as 0.4 mm0.4 mm. The efficiencies are both about 34.5% and the effects of chromatic aberration can be ignored.
      通信作者: 陈松岩, sychen@xmu.edu.cn
    • 基金项目: 国家自然科学基金重点项目(批准号:61534005)、国家自然科学基金(批准号:61474081)和国家重点基础研究发展计划(批准号:2013CB632103)资助的课题.
      Corresponding author: Chen Song-Yan, sychen@xmu.edu.cn
    • Funds: Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 61534005), the National Natural Science Foundation of China (Grant No. 61474081), and the National Basic Research Program of China (Grant No. 2013CB632103).
    [1]

    Chen N F, Bai Y M 2007 Physics 36 862 (in Chinese) [陈诺夫, 白一鸣 2007 物理 36 862]

    [2]

    Green M A, Emery K, Hishikawa Y, Warta W, Dunlop E D 2015 Prog. Photovoltaics 23 1

    [3]

    Cotal H L, Lillington D R, Ermer J H, King R R, Karam N H, Kurtz S R, Friedman D J, Olson J M, Ward J S, Duda A, Emery K A, Moriarty T 2000 Proceeding of the 28th Photovoltaic Specialist Conference Anchorage, America, September 15-22 p955

    [4]

    Baig H, Heasman K C, Mallick T K 2012 Renew. Sust. Energ. Rev. 16 5890

    [5]

    Liang Q B, Shu B F, Sun L J, Zhang Q Z, Chen M B 2014 Acta Phys. Sin. 63 168801 (in Chinese) [梁齐兵,舒碧芬,孙丽娟,张奇淄,陈明彪 2014 物理学报 63 168801]

    [6]

    Kurtz S R, O'Neill M J 1996 Proceeding of the 25th Photovoltaic Specialist Conference Washington, America, May 13-17, p361

    [7]

    Cotal H, Sherif R 2005 Proceedings of the 31st Photovoltaic Specialist Conference Florida, America, January 3-7, p747

    [8]

    James L W 1994 IEEE First World Conference on Photovoltaic Energy Conversion Hawaii, America, December 5-9, p1799

    [9]

    Espinet-Gonzlez P, Mohedano R, Garca I, Zamora P, Reystolle I, Benitez P, Algora C, Cvetkovic A, Hernndez M, Chaves J, Miano J C, Li Y 2012 AIP Conf. Proc. 1477 81

    [10]

    Araki K, Kondo M, Uozumi H, Yamaguchi M 2003 3rd World Conference on Photovoltaic Energy Conversion Orah, Japan, May 11-18, p853

    [11]

    Garca I, Espinet-Gonzlez P, Rey-Stolle I, Algora C 2011 IEEE J. Photovolt. 1 219

    [12]

    Nagel L, Pederson D 2013 https://infoscience. epfl. ch/record/209244/files/4-13-page16.pdf (2013-1-16) [2017-01-03]

    [13]

    Galiana B, Algora C, Rey-Stolle I, Vara I G 2005 IEEE Trans. Electron. Dev. 52 2552

    [14]

    Galiana B, Algora C, Rey-Stolle I 2006 Sol. Energ. Mat. Sol. C 90 2589

    [15]

    Garcia I, Espinet-Gonzlez P, Rey-Stolle I, Barrign E, Algora C 2011 AIP Conf. Proc. 1407 13

    [16]

    Garca I, Algora C, Rey-Stolle I, Galiana B 2008 Proceedings of the 33rd Photovoltaic Specialist Conference San Diego, America, May 11-16, p1

    [17]

    Espinet P, Garca I, Rey-Stolle I, Algora C, Baudrit M 2010 AIP Conf. Proc. 1277 24

    [18]

    Lian R H, Liang Q B, Shu B F, Fan C, Wu X L, Guo Y, Wang J, Yang Q C 2016 Acta Phys. Sin. 65 148801 (in Chinese) [连榕海, 梁齐兵, 舒碧芬, 范畴, 吴小龙, 郭银, 汪婧, 杨晴川 2016 物理学报 65 148801]

    [19]

    Ota Y, Nishioka K 2011 AIP Conf. Proc. 1407 281

    [20]

    Xiong S Z, Zhu M F 2009 Basic and Application of Solar Cells (Beijing: Science Press) pp95-97 (in Chinese) [熊绍珍, 朱美芳 2009 太阳能电池基础与应用 (北京: 科学出版社) 第95-97页]

    [21]

    Shen W Z, Wu C Y 1980 J. Appl. Phys. 51 466

  • [1]

    Chen N F, Bai Y M 2007 Physics 36 862 (in Chinese) [陈诺夫, 白一鸣 2007 物理 36 862]

    [2]

    Green M A, Emery K, Hishikawa Y, Warta W, Dunlop E D 2015 Prog. Photovoltaics 23 1

    [3]

    Cotal H L, Lillington D R, Ermer J H, King R R, Karam N H, Kurtz S R, Friedman D J, Olson J M, Ward J S, Duda A, Emery K A, Moriarty T 2000 Proceeding of the 28th Photovoltaic Specialist Conference Anchorage, America, September 15-22 p955

    [4]

    Baig H, Heasman K C, Mallick T K 2012 Renew. Sust. Energ. Rev. 16 5890

    [5]

    Liang Q B, Shu B F, Sun L J, Zhang Q Z, Chen M B 2014 Acta Phys. Sin. 63 168801 (in Chinese) [梁齐兵,舒碧芬,孙丽娟,张奇淄,陈明彪 2014 物理学报 63 168801]

    [6]

    Kurtz S R, O'Neill M J 1996 Proceeding of the 25th Photovoltaic Specialist Conference Washington, America, May 13-17, p361

    [7]

    Cotal H, Sherif R 2005 Proceedings of the 31st Photovoltaic Specialist Conference Florida, America, January 3-7, p747

    [8]

    James L W 1994 IEEE First World Conference on Photovoltaic Energy Conversion Hawaii, America, December 5-9, p1799

    [9]

    Espinet-Gonzlez P, Mohedano R, Garca I, Zamora P, Reystolle I, Benitez P, Algora C, Cvetkovic A, Hernndez M, Chaves J, Miano J C, Li Y 2012 AIP Conf. Proc. 1477 81

    [10]

    Araki K, Kondo M, Uozumi H, Yamaguchi M 2003 3rd World Conference on Photovoltaic Energy Conversion Orah, Japan, May 11-18, p853

    [11]

    Garca I, Espinet-Gonzlez P, Rey-Stolle I, Algora C 2011 IEEE J. Photovolt. 1 219

    [12]

    Nagel L, Pederson D 2013 https://infoscience. epfl. ch/record/209244/files/4-13-page16.pdf (2013-1-16) [2017-01-03]

    [13]

    Galiana B, Algora C, Rey-Stolle I, Vara I G 2005 IEEE Trans. Electron. Dev. 52 2552

    [14]

    Galiana B, Algora C, Rey-Stolle I 2006 Sol. Energ. Mat. Sol. C 90 2589

    [15]

    Garcia I, Espinet-Gonzlez P, Rey-Stolle I, Barrign E, Algora C 2011 AIP Conf. Proc. 1407 13

    [16]

    Garca I, Algora C, Rey-Stolle I, Galiana B 2008 Proceedings of the 33rd Photovoltaic Specialist Conference San Diego, America, May 11-16, p1

    [17]

    Espinet P, Garca I, Rey-Stolle I, Algora C, Baudrit M 2010 AIP Conf. Proc. 1277 24

    [18]

    Lian R H, Liang Q B, Shu B F, Fan C, Wu X L, Guo Y, Wang J, Yang Q C 2016 Acta Phys. Sin. 65 148801 (in Chinese) [连榕海, 梁齐兵, 舒碧芬, 范畴, 吴小龙, 郭银, 汪婧, 杨晴川 2016 物理学报 65 148801]

    [19]

    Ota Y, Nishioka K 2011 AIP Conf. Proc. 1407 281

    [20]

    Xiong S Z, Zhu M F 2009 Basic and Application of Solar Cells (Beijing: Science Press) pp95-97 (in Chinese) [熊绍珍, 朱美芳 2009 太阳能电池基础与应用 (北京: 科学出版社) 第95-97页]

    [21]

    Shen W Z, Wu C Y 1980 J. Appl. Phys. 51 466

  • [1] 吴晓旭, 龙军华, 孙强健, 王霞, 陈志韬, 于梦璐, 罗骁龙, 李雪飞, 赵沪隐, 陆书龙. GaInP/GaAs太阳电池的柔性封装及稳定性. 物理学报, 2023, 72(13): 138803. doi: 10.7498/aps.72.20230352
    [2] 廖小瑜, 曹俊诚, 黎华. 太赫兹半导体激光光频梳研究进展. 物理学报, 2020, 69(18): 189501. doi: 10.7498/aps.69.20200399
    [3] 周康, 黎华, 万文坚, 李子平, 曹俊诚. 太赫兹量子级联激光器频率梳的色散. 物理学报, 2019, 68(10): 109501. doi: 10.7498/aps.68.20190217
    [4] 魏薇, 张志明, 唐莉勤, 丁镭, 范万德, 李乙钢. 六重准晶涡旋光光子晶体光纤特性. 物理学报, 2019, 68(11): 114209. doi: 10.7498/aps.68.20190381
    [5] 耿易星, 李荣凤, 赵研英, 王大辉, 卢海洋, 颜学庆. 色散对双晶交叉偏振滤波输出特性的影响. 物理学报, 2017, 66(4): 040601. doi: 10.7498/aps.66.040601
    [6] 连榕海, 梁齐兵, 舒碧芬, 范畴, 吴小龙, 郭银, 汪婧, 杨晴川. 高倍聚光光伏模组中三结太阳电池沿光轴方向光电性能与优化. 物理学报, 2016, 65(14): 148801. doi: 10.7498/aps.65.148801
    [7] 李政颖, 孙文丰, 李子墨, 王洪海. 基于色散补偿光纤的高速光纤光栅解调方法. 物理学报, 2015, 64(23): 234207. doi: 10.7498/aps.64.234207
    [8] 彭红玲, 张玮, 孙利杰, 马绍栋, 石岩, 渠红伟, 张冶金, 郑婉华. 直接键合的三结太阳能电池研究. 物理学报, 2014, 63(17): 178801. doi: 10.7498/aps.63.178801
    [9] 梁齐兵, 舒碧芬, 孙丽娟, 张奇淄, 陈明彪. 三结太阳电池在非均匀光照下光斑强度和覆盖比率的优化研究. 物理学报, 2014, 63(16): 168801. doi: 10.7498/aps.63.168801
    [10] 陈翔, 张心贲, 祝贤, 程兰, 彭景刚, 戴能利, 李海清, 李进延. 色散补偿光子晶体光纤结构参数对其色散的影响. 物理学报, 2013, 62(4): 044222. doi: 10.7498/aps.62.044222
    [11] 陈应天, 何祚庥. 用于轴对称的两级光学聚光器的非成像二次反射镜. 物理学报, 2013, 62(13): 134209. doi: 10.7498/aps.62.134209
    [12] 吕金光, 梁静秋, 梁中翥. 空间调制傅里叶变换光谱仪分束器色散特性研究. 物理学报, 2012, 61(14): 140702. doi: 10.7498/aps.61.140702
    [13] 王伟, 杨博. 菱形纤芯光子晶体光纤色散与双折射特性分析. 物理学报, 2012, 61(6): 064601. doi: 10.7498/aps.61.064601
    [14] 赵岩, 施伟华, 姜跃进. 中心外缺陷对带隙型光子晶体光纤色散特性的影响. 物理学报, 2010, 59(9): 6279-6283. doi: 10.7498/aps.59.6279
    [15] 黄小东, 张小民, 王建军, 许党朋, 张锐, 林宏焕, 邓颖, 耿远超, 余晓秋. 色散对高能激光光纤前端FM-AM效应的影响. 物理学报, 2010, 59(3): 1857-1862. doi: 10.7498/aps.59.1857
    [16] 李林栗, 冯国英, 杨浩, 周国瑞, 周昊, 朱启华, 王建军, 周寿桓. 纳米光纤的色散特性及其超连续谱产生. 物理学报, 2009, 58(10): 7005-7011. doi: 10.7498/aps.58.7005
    [17] 聂志强, 李 岭, 姜 彤, 沈磊剑, 李沛哲, 甘琛利, 宋建平, 张彦鹏, 卢克清. 倒V形四能级亚飞秒极化拍的三光子吸收和色散. 物理学报, 2008, 57(1): 243-251. doi: 10.7498/aps.57.243
    [18] 赵兴涛, 侯蓝田, 刘兆伦, 王 伟, 魏红彦, 马景瑞. 改进的全矢量有效折射率方法分析光子晶体光纤的色散特性. 物理学报, 2007, 56(4): 2275-2280. doi: 10.7498/aps.56.2275
    [19] 李曙光, 刘晓东, 侯蓝田. 光子晶体光纤色散补偿特性的数值研究. 物理学报, 2004, 53(6): 1880-1886. doi: 10.7498/aps.53.1880
    [20] 任国斌, 王 智, 娄淑琴, 简水生. 高折射率芯Bragg光纤的色散特性研究. 物理学报, 2004, 53(6): 1862-1867. doi: 10.7498/aps.53.1862
计量
  • 文章访问数:  4603
  • PDF下载量:  131
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-16
  • 修回日期:  2017-04-27
  • 刊出日期:  2017-07-05

/

返回文章
返回