搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

毛细管放电类氖氩69.8 nm激光增益特性研究

刘涛 赵永蓬 丁宇洁 李小强 崔怀愈 姜杉

引用本文:
Citation:

毛细管放电类氖氩69.8 nm激光增益特性研究

刘涛, 赵永蓬, 丁宇洁, 李小强, 崔怀愈, 姜杉

Characteristics of gain in Ne-like Ar 69.8 nm laser pumped by capillary discharge

Liu Tao, Zhao Yong-Peng, Ding Yu-Jie, Li Xiao-Qiang, Cui Huai-Yu, Jiang Shan
PDF
导出引用
  • 建立了计算69.8 nm激光增益系数的理论模型,根据实验参数,计算了在主脉冲电流为12 kA时,69.8 nm激光增益系数最大值为0.32 cm-1.理论模拟了不同初始气压下增益系数在毛细管径向上的分布情况.对理论结果的分析表明,最佳的初始气压在1214 Pa范围内,此时69.8 nm激光增益系数的极值最大.实验上,利用毛细管放电装置和罗兰光谱仪,测量了不同气压下的69.8 nm激光强度,实验确定的最佳气压为16 Pa,与理论结果相近.此外,实验测量的增益系数(0.4 cm-1)略高于理论计算的增益系数(0.32 cm-1).
    In this paper, the theoretical calculation model of the gain coefficient of Ne-like Ar 69.8 nm laser is established. With the collisional-radiative model, the rate equations for the 46.9 nm and 69.8 nm lasers are built by considering the 4 levels of the 2s2p6 1S0, 2p53p 1S0, 2p53p 3P2, and 2p53s 1P1. The gain coefficients per ion density of 46.9 nm and 69.8 nm lasers are calculated on the basis of the rate equations. The results show that the 46.9 nm laser has potential of higher gain than the 69.8 nm laser at an electron temperature of 200 eV. The gain coefficients per ion density at different electron temperatures are also calculated. Under the same electron density, the higher electron temperature is favorable for increasing the gain coefficients per ion density of the 69.8 nm laser. Meanwhile there is also an optimal electron density corresponding to the maximum gain coefficient per ion density of the 69.8 nm laser at a given electron temperature. Then a one-dimensional cylindrical symmetry Lagrangian magneto-hydrodynamics (MHD) code is utilized to simulate the Z-pinch process. The radial distributions of the electron temperatures, the electron densities and the Ne-like Ar ion densities are calculated with the MHD code at the different initial pressures. According to the rate equations for the 69.8 nm laser and the simulation results of the MHD code, the gain coefficient distribution of 69.8 nm laser in the radial direction of the plasma can be determined when the plasma is compressed to a minimum radius. According to the experimental parameters, the maximum gain coefficient of 69.8 nm laser is calculated to be 0.32 cm-1 when the main pulse current is 12 kA. The relationship between the radial distribution of gain coefficient of 69.8 nm laser and the initial pressure is also simulated. The theoretical results show that the optimal initial pressure is in a range of 12-14 Pa, in which the amplitude of gain coefficient is maximum. The experiments about 69.8 nm laser are conducted with Al2O3 capillary which has an inner diameter of 3.2 mm and a length of 35 cm. A main current of 12 kA with a rise time of 32 ns is produced by the main pulse generator, which consists of a Marx generator and a Blumlein line filled with de-ionized water. The Blumlein line is pulse-charged by a ten-stage Marx generator and discharges through the capillary by a self-breakdown main switch pressurized with N2 gas. To reduce the amplitude of main current, we reduce the charging voltage of the Marx generator and increase the conducting inductance of the main switch. Prior to the operation of the main current pulse, the capillary filled with Ar is predischarged by a current of~20 A. The 69.8 nm laser intensity as a function of initial pressure is measured by a 1-m grazing incidence Rowland spectrograph. The experimental results show that the optimum pressure is 16 Pa which is similar to the theoretical result. In addition, the gain coefficient (0.4 cm-1) measured in experiment is slightly higher than that (0.32 cm-1) of the theoretical calculation.
      通信作者: 赵永蓬, zhaoyp3@hit.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61275139)资助的课题.
      Corresponding author: Zhao Yong-Peng, zhaoyp3@hit.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No.61275139).
    [1]

    Matthews D L, Hagelstein P L, Rosen M D, Eckart M J, Ceglio N M, Hazi A U, Medecki H, Macgowan B J, Trebes J E, Whitten B L 1985 Phys. Rev. Lett. 54 110

    [2]

    Rocca J J, Shlyaptsev V, Tomasel F G, Cortazar O D, Hartshorn D, Chilla J L 1994 Phys. Rev. Lett. 73 2192

    [3]

    Tomasel F G, Rocca J J, Shlyaptsev V N, Macchietto C D 1997 Phys. Rev. A 55 1437

    [4]

    Frati M, Seminario M, Rocca J J 2000 Opt. Lett. 25 1022

    [5]

    ZhaoY P, Jiang S, Xie Y, Yang D W, Teng S P, Chen D Y, Wang Q 2011 Opt. Lett. 36 3458

    [6]

    Moreno C H, Marconi M C, Shlyaptsev V N, Benware B R, Macchietto C D, Chilla J L A, Rocca J J 1998 Phys. Rev. A 58 1509

    [7]

    Kim D E, Kim D S, Osterheld A L 1998 J. Appl. Phys. 84 5862

    [8]

    Kukhlevsky S V, Ritucci A, Kozma I Z, Kaiser J, Shlyaptseva A, Tomassetti G, Samek O 2002 Contrib. Plasm. Phys. 42 109

    [9]

    Lan K, Zhang Y Q, Zheng W D 1999 Phys. Plasma 6 4343

    [10]

    Zheng W D, Peng H M 2002 High Pow. Laser Par. Beams 14 1 (in Chinese) [郑无敌, 彭惠民 2002 强激光与粒子束 14 1]

    [11]

    Zhao Y P, Liu T, Jiang S, Cui H Y, Ding Y J, Li L B 2016 Appl. Phys. B 122 107

    [12]

    Elton R C (translated by Fan P Z) 1996X-Ray Lasers(Beijing: Science Press) pp21-25 (in Chinese) [埃尔顿 著 (范品忠 译) 1996 X射线激光(北京: 科学出版社)第2125页]

    [13]

    Jiang S, Zhao Y P, Cui H Y, Li L B, Ding Y J, Zhang W H, Li W 2015 Contrib. Plasma Phys. 55 570

    [14]

    Zhao Y P, Liu T, Zhang W H, Li W, Cui H Y 2016 Opt. Lett. 41 3779

  • [1]

    Matthews D L, Hagelstein P L, Rosen M D, Eckart M J, Ceglio N M, Hazi A U, Medecki H, Macgowan B J, Trebes J E, Whitten B L 1985 Phys. Rev. Lett. 54 110

    [2]

    Rocca J J, Shlyaptsev V, Tomasel F G, Cortazar O D, Hartshorn D, Chilla J L 1994 Phys. Rev. Lett. 73 2192

    [3]

    Tomasel F G, Rocca J J, Shlyaptsev V N, Macchietto C D 1997 Phys. Rev. A 55 1437

    [4]

    Frati M, Seminario M, Rocca J J 2000 Opt. Lett. 25 1022

    [5]

    ZhaoY P, Jiang S, Xie Y, Yang D W, Teng S P, Chen D Y, Wang Q 2011 Opt. Lett. 36 3458

    [6]

    Moreno C H, Marconi M C, Shlyaptsev V N, Benware B R, Macchietto C D, Chilla J L A, Rocca J J 1998 Phys. Rev. A 58 1509

    [7]

    Kim D E, Kim D S, Osterheld A L 1998 J. Appl. Phys. 84 5862

    [8]

    Kukhlevsky S V, Ritucci A, Kozma I Z, Kaiser J, Shlyaptseva A, Tomassetti G, Samek O 2002 Contrib. Plasm. Phys. 42 109

    [9]

    Lan K, Zhang Y Q, Zheng W D 1999 Phys. Plasma 6 4343

    [10]

    Zheng W D, Peng H M 2002 High Pow. Laser Par. Beams 14 1 (in Chinese) [郑无敌, 彭惠民 2002 强激光与粒子束 14 1]

    [11]

    Zhao Y P, Liu T, Jiang S, Cui H Y, Ding Y J, Li L B 2016 Appl. Phys. B 122 107

    [12]

    Elton R C (translated by Fan P Z) 1996X-Ray Lasers(Beijing: Science Press) pp21-25 (in Chinese) [埃尔顿 著 (范品忠 译) 1996 X射线激光(北京: 科学出版社)第2125页]

    [13]

    Jiang S, Zhao Y P, Cui H Y, Li L B, Ding Y J, Zhang W H, Li W 2015 Contrib. Plasma Phys. 55 570

    [14]

    Zhao Y P, Liu T, Zhang W H, Li W, Cui H Y 2016 Opt. Lett. 41 3779

计量
  • 文章访问数:  4424
  • PDF下载量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-02-13
  • 修回日期:  2017-05-23
  • 刊出日期:  2017-08-05

/

返回文章
返回