搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空位缺陷对-AgVO3电子结构和光吸收性能的影响

任超 李秀燕 落全伟 刘瑞萍 杨致 徐利春

引用本文:
Citation:

空位缺陷对-AgVO3电子结构和光吸收性能的影响

任超, 李秀燕, 落全伟, 刘瑞萍, 杨致, 徐利春

Electronic structure and optical absorption properties of -AgVO3 with vacancy defects

Ren Chao, Li Xiu-Yan, Luo Quan-Wei, Liu Rui-Ping, Yang Zhi, Xu Li-Chun
PDF
导出引用
  • 基于密度泛函的第一性原理研究了Ag空位、O空位和Ag-O双空位对-AgVO3的电子结构及光学性质的影响.采用广义梯度近似平面波超软赝势GGA+U方法,对不同缺陷体系的形成能、能带结构、电子态密度、差分电荷密度和吸收光谱进行了计算和分析.通过比较不同Ag空位和O空位的形成能,确定了-AgVO3中主要形成Ag3空位和O1空位,并且Ag空位较O空位更容易形成.Ag3空位和O1空位的存在都使得-AgVO3带隙有一定程度的减小;Ag3空位使-AgVO3呈现p-型半导体性质,而O1空位和Ag3-O1双空位使-AgVO3呈现n-型半导体性质.Ag3和O1空位对晶体在可见光范围内的光吸收影响较小.
    Semiconductor photocatalysts have received much attention due to their applications of wastewater treatment and air purification. The monoclinic -AgVO3, which has narrow band gap (2.11 eV) and can respond to visible light, has been considered as one of the promising semiconductor photocatalysts. The vacancy defects always exist in -AgVO3 prepared under the conventional synthesis conditions and have important influences on the structure and properties of -AgVO3. Systematic theoretical study of the vacancy defects in -AgVO3 is still lacking. In this paper, using density functional theory plus U (DFT+U) approach, the Ag vacancy, O vacancy and Ag-O bivacancy in -AgVO3 are studied. The formation energy, band structure, differential charge density and optical absorption spectrum of -AgVO3 with vacancy defects are carefully investigated. When the U values are chosen as 6 eV and 2.7 eV for the Ag-4d and V-3d electrons respectively, the reasonable lattice parameters and band gap value can be obtained for -AgVO3. By comparing the formation energies of different Ag and O vacancies, we find that the dominating vacancy defects in -AgVO3 are Ag3 and O1 vacancies, and the formation of Ag vacancy is much easier than that of O vacancy. The analyses of the total and partial density of states indicate that the conduction band arises mainly from V-3d orbit, and the valence band is mainly composed of Ag-4d and O-2p states for -AgVO3. With Ag3 vacancy, O1 vacancy or Ag3-O1 bivacancy, the band gaps of -AgVO3 all decrease in different degrees. The Ag3 vacancy behaves as p-type donor, allowing the Fermi level to shift down to the valence band maximum. However, O1 vacancy and Ag3-O1 bivacancy both act as n-type donors, and the Fermi level shifts to the conduction band minimum. The change of the Fermi level for the vacancy defect systems also means that the charge transfer occurs among the atoms around the vacancy, which is analyzed by calculating the differential charge density. The Ag3 vacancy and O1 vacancy have little effects on the light absorption of -AgVO3 in the range of visible light, while O1 vacancy and Ag3-O1 bivacancy in -AgVO3 cause the obvious absorption of light in the near infrared region.
      通信作者: 李秀燕, lixiuyan@tyut.edu.cn
    • 基金项目: 国家自然科学基金(批准号:U1510132,51401142,11604235)和山西省自然科学基金(批准号:2015021027,2016021030)资助的课题.
      Corresponding author: Li Xiu-Yan, lixiuyan@tyut.edu.cn
    • Funds: Project supported by National Natural Science Foundation of China (Grant Nos.U1510132,51401142,11604235) and the Natural Science Foundation of Shanxi,China (Grant Nos.2015021027,2016021030).
    [1]

    Zeng H, Wang Q, Rao Y 2015 RSC Adv. 5 3011

    [2]

    Liang S, Zhou J, Zhang X, Tang Y, Fang G, Chen T, Tan X 2013 Cryst. Eng. Comm. 15 9869

    [3]

    Holtz R D, Lima B A, Souza Filho A G, Brocchi M, Alves O L 2012 Nanomedicine 8 935

    [4]

    Mai L, Xu L, Gao Q, Han C, Hu B, Pi Y 2010 Nano Lett. 10 2604

    [5]

    Zhao W, Guo Y, Wang S, He H, Sun C, Yang S 2015 Appl. Catal. B 165 335

    [6]

    Zhao W, Liang F, Jin Z M, Shi X B, Yin P H, Wang X R, Sun C, Gao Z Q, Liao L S 2014 Mater. Chem. A 2 13226

    [7]

    Liang S, Zhou J, Pan A, Zhang X, Tang Y, Tan X, Chen T, Wu R 2013 Power Sources 228 178

    [8]

    Ju P, Fan H, Zhang B, Shang K, Liu T, Ai S, Zhang D 2013 Sep. Purif. Technol. 109 107

    [9]

    Kittaka S, Matsuno K, Akashi H 1999 Solid State Chem. 142 360

    [10]

    Feng M, Luo L B, Nie B, Yu S H 2013 Adv. Funct. Mater. 23 5116

    [11]

    de Oliveira R C, Assis M, Teixeira M M, da Silva M D P, Li M S, Andres J, Gracia L, Longo E 2016 J. Phys. Chem. C 120 12254

    [12]

    Sui P F, Dai Z H, Zhang X L, Zhao Y C 2015 Chin. Phys. Lett. 32 077101

    [13]

    Solovyev I V, Dederichs P H 1994 Phys. Rev. B 50 16861

    [14]

    Rozier P, Savariault J M, Galy J 1996 Solid State Chem. 122 303

    [15]

    Shen X C 2002 The Spectrum and Optical Property of Semiconductor (Beijing: Science Press) p77 (in Chinese) [沈学础 2002 半导体光谱和光学性质 (北京: 科学出版社) 第77页]

    [16]

    Shen J, Wei B, Zhou J, Shen S Z, Xue G J, Liu H X, Chen W 2015 Acta Phys. Sin. 64 217801 (in Chinese) [沈杰, 魏宾, 周静, Shen Shirley Zhiqi, 薛广杰, 刘韩星, 陈文 2015 物理学报 64 217801]

    [17]

    Sun J, Wang H T, He J L, Tian Y J 2005 Phys. Rev. B 71 125132

  • [1]

    Zeng H, Wang Q, Rao Y 2015 RSC Adv. 5 3011

    [2]

    Liang S, Zhou J, Zhang X, Tang Y, Fang G, Chen T, Tan X 2013 Cryst. Eng. Comm. 15 9869

    [3]

    Holtz R D, Lima B A, Souza Filho A G, Brocchi M, Alves O L 2012 Nanomedicine 8 935

    [4]

    Mai L, Xu L, Gao Q, Han C, Hu B, Pi Y 2010 Nano Lett. 10 2604

    [5]

    Zhao W, Guo Y, Wang S, He H, Sun C, Yang S 2015 Appl. Catal. B 165 335

    [6]

    Zhao W, Liang F, Jin Z M, Shi X B, Yin P H, Wang X R, Sun C, Gao Z Q, Liao L S 2014 Mater. Chem. A 2 13226

    [7]

    Liang S, Zhou J, Pan A, Zhang X, Tang Y, Tan X, Chen T, Wu R 2013 Power Sources 228 178

    [8]

    Ju P, Fan H, Zhang B, Shang K, Liu T, Ai S, Zhang D 2013 Sep. Purif. Technol. 109 107

    [9]

    Kittaka S, Matsuno K, Akashi H 1999 Solid State Chem. 142 360

    [10]

    Feng M, Luo L B, Nie B, Yu S H 2013 Adv. Funct. Mater. 23 5116

    [11]

    de Oliveira R C, Assis M, Teixeira M M, da Silva M D P, Li M S, Andres J, Gracia L, Longo E 2016 J. Phys. Chem. C 120 12254

    [12]

    Sui P F, Dai Z H, Zhang X L, Zhao Y C 2015 Chin. Phys. Lett. 32 077101

    [13]

    Solovyev I V, Dederichs P H 1994 Phys. Rev. B 50 16861

    [14]

    Rozier P, Savariault J M, Galy J 1996 Solid State Chem. 122 303

    [15]

    Shen X C 2002 The Spectrum and Optical Property of Semiconductor (Beijing: Science Press) p77 (in Chinese) [沈学础 2002 半导体光谱和光学性质 (北京: 科学出版社) 第77页]

    [16]

    Shen J, Wei B, Zhou J, Shen S Z, Xue G J, Liu H X, Chen W 2015 Acta Phys. Sin. 64 217801 (in Chinese) [沈杰, 魏宾, 周静, Shen Shirley Zhiqi, 薛广杰, 刘韩星, 陈文 2015 物理学报 64 217801]

    [17]

    Sun J, Wang H T, He J L, Tian Y J 2005 Phys. Rev. B 71 125132

  • [1] 张红艳, 包黎红, 潮洛蒙, 赵凤岐, 刘子忠. 多功能多元稀土六硼化物La1–x Srx B6光吸收及热电子发射机理. 物理学报, 2021, 70(21): 214204. doi: 10.7498/aps.70.20211069
    [2]
    1. 翟顺成, 郭平, 郑继明, 赵普举, 索兵兵, 万云, 
    第一性原理研究O和S掺杂的石墨相氮化碳(g-C3N4)6量子点电子结构和光吸收性质. 物理学报, 2017, 66(18): 187102. doi: 10.7498/aps.66.187102
    [3] 薛斌, 王洪阳, 秦猛, 曹毅, 王炜. 基于可调控多肽纳米管和石墨烯复合纳米结构的光吸收催化平台. 物理学报, 2015, 64(9): 098702. doi: 10.7498/aps.64.098702
    [4] 吴海平, 陈栋国, 黄德财, 邓开明. SrCoO3电子结构和磁学性质的第一性原理研究. 物理学报, 2012, 61(3): 037101. doi: 10.7498/aps.61.037101
    [5] 张蓓, 保安, 陈楚, 张军. ConCm(n=15; m=1,2)团簇的密度泛函理论研究. 物理学报, 2012, 61(15): 153601. doi: 10.7498/aps.61.153601
    [6] 袁健美, 郝文平, 李顺辉, 毛宇亮. Ni(111)表面C原子吸附的密度泛函研究. 物理学报, 2012, 61(8): 087301. doi: 10.7498/aps.61.087301
    [7] 唐春梅, 郭微, 朱卫华, 刘明熠, 张爱梅, 巩江峰, 王辉. 内掺过渡金属非典型富勒烯M@C22(M=Sc, Ti, V, Cr, Mn, Fe, Co, Ni) 几何结构、电子结构、稳定性和磁性的密度泛函研究. 物理学报, 2012, 61(2): 026101. doi: 10.7498/aps.61.026101
    [8] 曹青松, 袁勇波, 肖传云, 陆瑞锋, 阚二军, 邓开明. C80H80几何结构和电子性质的密度泛函研究. 物理学报, 2012, 61(10): 106101. doi: 10.7498/aps.61.106101
    [9] 郭钊, 陆斌, 蒋雪, 赵纪军. 幻数尺寸Li-n-1,Lin,Li+ n+1(n=20,40)团簇的几何结构、电子与光学性质的第一性原理研究. 物理学报, 2011, 60(1): 013601. doi: 10.7498/aps.60.013601
    [10] 张致龙, 陈玉红, 任宝兴, 张材荣, 杜瑞, 王伟超. (HMgN3)n(n=15)团簇结构与性质的密度泛函理论研究. 物理学报, 2011, 60(12): 123601. doi: 10.7498/aps.60.123601
    [11] 顾娟, 王山鹰, 苟秉聪. Au和3d过渡金属元素混合团簇结构、电子结构和磁性的研究. 物理学报, 2009, 58(5): 3338-3351. doi: 10.7498/aps.58.3338
    [12] 陈亮, 徐灿, 张小芳. 氧化镁纳米管团簇电子结构的密度泛函研究. 物理学报, 2009, 58(3): 1603-1607. doi: 10.7498/aps.58.1603
    [13] 陈玉红, 康 龙, 张材荣, 罗永春, 蒲忠胜. (Li3N)n(n=1—5)团簇结构与性质的密度泛函研究. 物理学报, 2008, 57(7): 4174-4181. doi: 10.7498/aps.57.4174
    [14] 朱应涛, 杨传路, 王美山, 董永绵. β-Si3N4电子结构和红外和拉曼频率的第一性原理研究. 物理学报, 2008, 57(2): 1048-1053. doi: 10.7498/aps.57.1048
    [15] 陈玉红, 康 龙, 张材荣, 罗永春, 元丽华, 李延龙. (Ca3N2)n(n=1—4)团簇结构与性质的密度泛函理论研究. 物理学报, 2008, 57(10): 6265-6270. doi: 10.7498/aps.57.6265
    [16] 崔永锋, 袁志好. 表面修饰的二氧化钛纳米材料的结构相变和光吸收性质. 物理学报, 2006, 55(10): 5172-5177. doi: 10.7498/aps.55.5172
    [17] 张 勇, 唐超群, 戴 君. Rb2TeW3O12电子结构及光学性质的第一性原理研究. 物理学报, 2005, 54(2): 868-874. doi: 10.7498/aps.54.868
    [18] 秦 华, 傅汝廉, 郜洪云, 刘 娟, 史心刚. 三能级固体激光介质对抽运光吸收的理论研究. 物理学报, 2005, 54(4): 1587-1592. doi: 10.7498/aps.54.1587
    [19] 谭明秋, 陶向明, 徐小军, 蔡建秋. 含铀化合物UAl3和USn3电子结构的密度泛函研究. 物理学报, 2003, 52(12): 3142-3149. doi: 10.7498/aps.52.3142
    [20] 王银海, 牟季美, 蔡维理, 许彦旗. 纳米Cu/Al2O3组装体模板合成与光吸收. 物理学报, 2001, 50(9): 1751-1755. doi: 10.7498/aps.50.1751
计量
  • 文章访问数:  5247
  • PDF下载量:  223
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-18
  • 修回日期:  2017-05-15
  • 刊出日期:  2017-08-05

/

返回文章
返回