搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

熵在非晶材料合成中的作用

李蕊轩 张勇

引用本文:
Citation:

熵在非晶材料合成中的作用

李蕊轩, 张勇

Entropy and glass formation

Li Rui-Xuan, Zhang Yong
PDF
导出引用
  • 熵作为系统的状态函数,对于真实物质体系而言是一个极为重要的物理量.在非晶态合金的制备过程中最具代表性的指导原则有“混乱原理”和井上三原则,二者皆与熵有着紧密的联系.在过去很长一段时间内,这些经验准则指导了大量新型非晶体系的发现,但近些年的实验结果对这些理论提出了质疑.除组元数目之外,还有其他尚待研究的因素也影响着合金体系的玻璃形成能力.本文总结了玻璃转变过程中熵在热力学条件、动力学条件和结构条件中所扮演的角色,阐述了其对玻璃形成能力产生的或正或反的影响.特别是对近几年发展起来的高熵非晶体系的研究有助于开发出临界尺寸更大的非晶合金,也有助于进一步探索多组元合金和非晶形成能力之间的关系.
    Entropy is a state function of the real physical system, which relates to the chaos of a system. During the long-term exploring glass-forming systems, many empirical rules are put forward, including “confusion principle” and three empirical rules.Over a long period of exploring, many glass-forming alloys are developed based on those principles, while some questions have been raised in recent years based on the experimental results, because some other uncertain factors also have influence on the glass-forming ability (GFA) except a number of constituents, e.g., entropy. Greer claimed that in the “confusion principle” the higher the entropy value, the better the glass-formation ability will be, which does not accord with the recent experimental results.The effects of entropy on the glass-formation ability are summarized from the viewpoints of thermodynamics, kinetics, and complexity of atomic structures. In the aspects of thermodynamics and structure, the increase of entropy has a positive effect on glass formation, while in kinetics, the influence is negative. From the viewpoint of thermodynamics, the increase of entropy leads to the decrease of the entropy difference between solid phase and liquid phase, and therefore, the difference in Gibbs free energy between these two phases decreases. At a certain time during solidification, compared with the low-entropy alloy, the high-entropy alloy in the solid phase has an atomic arrangement close to that in the liquid, and it is more likely to form the amorphous phase.In the aspect of kinetics, the increase of entropy results in the decrease of the viscosity of the system according to the Adam-Gibbs equation. As a result, atoms diffuse easily in the system and the ordered-phase is more likely to form, which means that the glass-formation ability decreases with the increase of entropy. Furthermore, in the aspect of atomic structure, the increase of mismatch entropy relates to the big misfit degree between atoms, i. e., the large atomic size difference. Atoms in the high-entropy alloy tend to distribute disorderly in the system, and therefore the stress between atoms increases. As a result, with the increase of the entropy, the ordered-phase becomes unstable and the GFA will be enhanced.Furthermore, the high-entropy-glass is briefly reviewed and analyzed, which is a new system between high-entropy alloy and amorphous alloy. There have been many high-performance high-entropy-glass systems reported up to now. Researches about this unique system will contribute to developing some new amorphous alloys with excellent performances, and more importantly, to exploring the complex relationship between GFA and multicomponent alloys.
      通信作者: 张勇, drzhangy@ustb.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51471025,51671020)资助的课题.
      Corresponding author: Zhang Yong, drzhangy@ustb.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51471025, 51671020).
    [1]

    Kramer J 1934 Annln. Phys. 19 37

    [2]

    Johnson W L 1986 Prog. Mater. Sci. 30 81

    [3]

    Klement W, Willens R, Duwez P 1960 Nature 187 869

    [4]

    Chen H S 1974 Acta Metall. 22 1505

    [5]

    Inoue A, Kato A, Zhang T, Kim S G, Masumoto T 1991 Mater. Trans. JIM 32 609

    [6]

    Inoue A, Kita K, Zhang T, Masumoto T 1989 Mater. Trans. JIM 30 722

    [7]

    Inoue A, Zhang T, Masumoto T 1990 Mater. Trans. JIM 31 177

    [8]

    Jiao W, Zhao K, Xi X K, Zhao D Q, Pan M X, Wang W H 2010 J. Non-Cryst. Solids 356 1867

    [9]

    Li H F, Zhao K, Wang Y B, Zheng Y F, Wang W H 2012 J. Biomed. Mater. Res. B: Appl. Biomater. 100 368

    [10]

    Wang W H, Dong C, Shek C H 2004 Mater. Sci. Eng. R 44 45

    [11]

    Peker A, Johnson W L 1993 Appl. Phys. Lett. 63 2342

    [12]

    Inoue A, Nakamura T, Nishiyama N, Masumoto T 1992 Mater. Trans. JIM 33 937

    [13]

    Inoue A, Zhang T, Masumoto T 1989 Mater. Trans. JIM 30 965

    [14]

    Inoue A, Zhang T, Nishiyama N, Ohba K, Masumoto T 1993 Mater. Trans. JIM 34 1234

    [15]

    Cantor B, Chang I T H, Knight P, Vincent A J B 2004 Mater. Sci. Eng. A 375-377 213

    [16]

    Takeuchi A, Inoue A 2000 Mater. Trans. JIM 41 1372

    [17]

    Takeuchi A, Amiya K, Wada T, Yubuta K, Zhang W, Makino A 2013 Entropy 15 3810

    [18]

    Samaei A T, Mohammadi E 2015 Mater. Res. Express 2 096501

    [19]

    Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H, Chang S Y 2004 Adv. Eng. Mater. 6 299

    [20]

    Zhao K, Xia X X, Bai H Y, Zhao D Q, Wang W H 2011 Appl. Phys. Lett. 98 141913

    [21]

    Takeuchi A, Chen N, Wada T, Yokoyama Y, Kato H, Inoue A, Yeh J W 2011 Intermetallics 19 1546

    [22]

    Li H F, Xie X H, Zhao K, Wang Y B, Zheng Y F, Wang W H, Qin L 2013 Acta Biomater. 9 8561

    [23]

    Li Y, Zhang W, Qi T 2017 J. Alloy. Compd. 693 25

    [24]

    Cheng C Y, Yeh J W 2016 Mater. Lett. 181 223

    [25]

    Ding H Y, Yao K F 2013 J. Non-Cryst Solids 364 9

    [26]

    Ding H Y, Shao Y, Gong P, Li J F, Yao K F 2014 Mater. Lett. 125 151

    [27]

    Gao X Q, Zhao K, Ke H B, Ding D W, Wang W H, Bai H Y 2011 J. Non-Cryst. Solids 357 3557

    [28]

    Huo J, Huo L, Men H, Wang X, Inoue A, Wang J, Chang C, Li R W 2015 Intermetallics 58 31

    [29]

    Zhao S F, Yang G N, Ding H Y, Yao K F 2015 Intermetallics 61 47

    [30]

    Qi T, Li Y, Takeuchi A, Xie G, Miao H, Zhang W 2015 Intermetallics 66 8

    [31]

    Zhao S F, Shao Y, Liu X, Chen N, Ding H Y, Yao K F 2015 Mater. Design 87 625

    [32]

    Cheng C Y, Yeh J W 2016 Mater. Lett. 185 456

    [33]

    Zhang Y, Zhou Y J, Lin J P, Chen G L, Liaw P K 2008 Adv. Eng. Mater. 10 534

    [34]

    Guo S, Hu Q, Ng C, Liu C T 2013 Intermetallics 41 96

  • [1]

    Kramer J 1934 Annln. Phys. 19 37

    [2]

    Johnson W L 1986 Prog. Mater. Sci. 30 81

    [3]

    Klement W, Willens R, Duwez P 1960 Nature 187 869

    [4]

    Chen H S 1974 Acta Metall. 22 1505

    [5]

    Inoue A, Kato A, Zhang T, Kim S G, Masumoto T 1991 Mater. Trans. JIM 32 609

    [6]

    Inoue A, Kita K, Zhang T, Masumoto T 1989 Mater. Trans. JIM 30 722

    [7]

    Inoue A, Zhang T, Masumoto T 1990 Mater. Trans. JIM 31 177

    [8]

    Jiao W, Zhao K, Xi X K, Zhao D Q, Pan M X, Wang W H 2010 J. Non-Cryst. Solids 356 1867

    [9]

    Li H F, Zhao K, Wang Y B, Zheng Y F, Wang W H 2012 J. Biomed. Mater. Res. B: Appl. Biomater. 100 368

    [10]

    Wang W H, Dong C, Shek C H 2004 Mater. Sci. Eng. R 44 45

    [11]

    Peker A, Johnson W L 1993 Appl. Phys. Lett. 63 2342

    [12]

    Inoue A, Nakamura T, Nishiyama N, Masumoto T 1992 Mater. Trans. JIM 33 937

    [13]

    Inoue A, Zhang T, Masumoto T 1989 Mater. Trans. JIM 30 965

    [14]

    Inoue A, Zhang T, Nishiyama N, Ohba K, Masumoto T 1993 Mater. Trans. JIM 34 1234

    [15]

    Cantor B, Chang I T H, Knight P, Vincent A J B 2004 Mater. Sci. Eng. A 375-377 213

    [16]

    Takeuchi A, Inoue A 2000 Mater. Trans. JIM 41 1372

    [17]

    Takeuchi A, Amiya K, Wada T, Yubuta K, Zhang W, Makino A 2013 Entropy 15 3810

    [18]

    Samaei A T, Mohammadi E 2015 Mater. Res. Express 2 096501

    [19]

    Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H, Chang S Y 2004 Adv. Eng. Mater. 6 299

    [20]

    Zhao K, Xia X X, Bai H Y, Zhao D Q, Wang W H 2011 Appl. Phys. Lett. 98 141913

    [21]

    Takeuchi A, Chen N, Wada T, Yokoyama Y, Kato H, Inoue A, Yeh J W 2011 Intermetallics 19 1546

    [22]

    Li H F, Xie X H, Zhao K, Wang Y B, Zheng Y F, Wang W H, Qin L 2013 Acta Biomater. 9 8561

    [23]

    Li Y, Zhang W, Qi T 2017 J. Alloy. Compd. 693 25

    [24]

    Cheng C Y, Yeh J W 2016 Mater. Lett. 181 223

    [25]

    Ding H Y, Yao K F 2013 J. Non-Cryst Solids 364 9

    [26]

    Ding H Y, Shao Y, Gong P, Li J F, Yao K F 2014 Mater. Lett. 125 151

    [27]

    Gao X Q, Zhao K, Ke H B, Ding D W, Wang W H, Bai H Y 2011 J. Non-Cryst. Solids 357 3557

    [28]

    Huo J, Huo L, Men H, Wang X, Inoue A, Wang J, Chang C, Li R W 2015 Intermetallics 58 31

    [29]

    Zhao S F, Yang G N, Ding H Y, Yao K F 2015 Intermetallics 61 47

    [30]

    Qi T, Li Y, Takeuchi A, Xie G, Miao H, Zhang W 2015 Intermetallics 66 8

    [31]

    Zhao S F, Shao Y, Liu X, Chen N, Ding H Y, Yao K F 2015 Mater. Design 87 625

    [32]

    Cheng C Y, Yeh J W 2016 Mater. Lett. 185 456

    [33]

    Zhang Y, Zhou Y J, Lin J P, Chen G L, Liaw P K 2008 Adv. Eng. Mater. 10 534

    [34]

    Guo S, Hu Q, Ng C, Liu C T 2013 Intermetallics 41 96

  • [1] 孙吉, 沈鹏飞, 尚其忠, 张鹏雁, 刘莉, 李明瑞, 侯龙, 李维火. B元素添加对FePBCCu合金非晶形成能力、磁性能和力学性能的影响. 物理学报, 2023, 72(2): 026101. doi: 10.7498/aps.72.20221553
    [2] 马爽, 郝玮晔, 王旭东, 张伟, 姚曼. 类金属元素影响Co-Y-B合金非晶形成能力和磁性能的机制分析. 物理学报, 2022, 71(22): 228102. doi: 10.7498/aps.71.20220873
    [3] 柯海波, 蒲朕, 张培, 张鹏国, 徐宏扬, 黄火根, 刘天伟, 王英敏. 铀基非晶合金的发展现状. 物理学报, 2017, 66(17): 176104. doi: 10.7498/aps.66.176104
    [4] 吴渊, 宋温丽, 周捷, 曹迪, 王辉, 刘雄军, 吕昭平. 块体非晶合金的韧塑化. 物理学报, 2017, 66(17): 176111. doi: 10.7498/aps.66.176111
    [5] 冯维, 丁辉, 林昊, 罗辽复. λ噬菌体溶源/裂解转换调控与定态熵. 物理学报, 2012, 61(16): 168701. doi: 10.7498/aps.61.168701
    [6] 张雅楠, 王有骏, 孔令体, 李金富. Y对Fe-Si-B 合金非晶形成能力及软磁性能的影响. 物理学报, 2012, 61(15): 157502. doi: 10.7498/aps.61.157502
    [7] 杨 波. 一般加速带电带磁的动态黑洞中标量场的熵. 物理学报, 2008, 57(4): 2614-2620. doi: 10.7498/aps.57.2614
    [8] 张 辉, 张国英, 杨 爽, 吴 迪, 戚克振. Zr基大块非晶中添加元素对非晶形成能力及耐蚀性的影响. 物理学报, 2008, 57(12): 7822-7826. doi: 10.7498/aps.57.7822
    [9] 杨 波. 变加速直线运动黑洞的温度和Dirac场的熵. 物理学报, 2007, 56(11): 6772-6776. doi: 10.7498/aps.56.6772
    [10] 韩亦文, 洪 云, 杨树政. 广义不确定关系与整体单极黑洞Dirac场的熵. 物理学报, 2007, 56(1): 10-14. doi: 10.7498/aps.56.10
    [11] 郑元强. 球对称动态黑洞Dirac场的熵的再讨论. 物理学报, 2007, 56(3): 1266-1270. doi: 10.7498/aps.56.1266
    [12] 郑元强. 动态广义球对称含荷黑洞Dirac场的熵. 物理学报, 2006, 55(7): 3272-3276. doi: 10.7498/aps.55.3272
    [13] 王珍玉, 杨院生, 童文辉, 李会强, 胡壮麒. 大块非晶临界冷却速率的非等温转变计算模型. 物理学报, 2006, 55(4): 1953-1958. doi: 10.7498/aps.55.1953
    [14] 牛振风, 刘文彪. 新Tortoise坐标变换与任意加速带电动态黑洞熵. 物理学报, 2005, 54(1): 475-480. doi: 10.7498/aps.54.475
    [15] 孙学锋, 景 玲, 刘文彪. 黑洞熵无截断薄层模型的改进与推广. 物理学报, 2004, 53(11): 4002-4006. doi: 10.7498/aps.53.4002
    [16] 王波波. 环面黑洞背景下量子场的熵. 物理学报, 2004, 53(7): 2401-2406. doi: 10.7498/aps.53.2401
    [17] 强丽娥, 高新芹, 赵 峥. 动态黑洞温度和熵的再讨论. 物理学报, 2004, 53(10): 3619-3626. doi: 10.7498/aps.53.3619
    [18] 宋太平, 侯晨霞, 黄金书. 一般球对称带电蒸发黑洞的熵. 物理学报, 2002, 51(8): 1901-1906. doi: 10.7498/aps.51.1901
    [19] 张靖仪, 赵峥. 直线加速动态黑洞Dirac场的熵. 物理学报, 2002, 51(10): 2399-2406. doi: 10.7498/aps.51.2399
    [20] 宋太平, 侯晨霞, 史旺林. Vaidya-Bonner黑洞的熵. 物理学报, 2002, 51(6): 1398-1402. doi: 10.7498/aps.51.1398
计量
  • 文章访问数:  7217
  • PDF下载量:  832
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-01
  • 修回日期:  2017-06-21
  • 刊出日期:  2017-09-05

/

返回文章
返回