搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

tBid蛋白引发磷脂膜透化过程的研究

马丽 贺小龙 李明 胡书新

引用本文:
Citation:

tBid蛋白引发磷脂膜透化过程的研究

马丽, 贺小龙, 李明, 胡书新

Fluorescent investigation on process of tBid inducing membrane permeabilization

Ma Li, He Xiao-Long, Li Ming, Hu Shu-Xin
PDF
导出引用
  • Bid蛋白是仅有BH3结构域的Bcl-2家族蛋白,在溶酶体膜透化以及线粒体外膜透化引发的细胞凋亡过程中起着非常重要的调控作用,但是Bid蛋白与生物膜之间的相互作用导致脂膜透化的确切机制尚不十分清楚.本文利用激光扫描共聚焦显微成像技术及基于氧化石墨烯表面诱导荧光衰逝的单分子荧光技术,分别从单囊泡及单分子水平对tBid蛋白与磷脂膜之间的相互作用进行了系统的研究.结果表明,tBid蛋白在膜上聚集后可引起脂膜的透化,且脂膜透化的发生源于聚集体中一些tBid蛋白更深入地插入了脂膜中.
    The proapoptotic protein tBid is a member of Bcl-2 family, and it plays an important role in apoptosis by inducing mitochondrial outer membrane permeabilization (MOMP) and lysosomal membrane permeabilization (LMP). Previous studies have shown that the mechanism of tBid-dependent MOMP and LMP depends on tBid interacting with membranes. Researchers hold different opinions about whether tBid itself could induce MOMP and LMP. Some of the researchers insist that tBid must trigger other proteins like Bax or Bak inserting into the membrane, and assembly of tBid itself could not form pores large enough to release cytochrome c. Some others think that tBid just like Bax, can permeabilize mitochondrial outer membrane releasing cytochrome c and lysosomal membrane with the leakage of lysosomal cathepsin B. Here, we want to know whether the tBid itself can induce membrane permeabilization in our model system at low concentration. We use 3 ways to observe tBid and membranes interactions. They are confocal imaging of GUVs (giant unilamellar vesicles), traditional single molecular fluorescence assay, and a recently developed approach, single molecular surface-induced fluorescence attenuation (sm-SIFA). So we can obtain information from single vesicle level and single molecule level. At single vesicle level, we can directly find out whether the GUVs are permeabilized and at the same time the shape of the GUVs is changed. At a single molecule level, we can know the properties of one protein. Especially by using the sm-SIFA, we can obtain the insertion depth of exact residue. Combining the results obtained from different ways under the same conditions, we find that tBid itself can induce the model membrane to permeate, releasing the fluorescent molecules, by oligomerization. What is more, we suggest that the mechanism is that in oligomers some tBids can be inserted deep into the membrane although in oligomers not all the proteins have the same insertion depth. It is indicated that the conformations of tBids in oligomers are diversified. We also prove that the ways we use here are efficient. The GUVs and supported lipid bilayers are indeed tenable model systems. Sm-SIFA has a grand future in the study of protein and membrane interactions.
      通信作者: 胡书新, hushuxin@iphy.ac.cn
    • 基金项目: 国家自然科学基金重大研究计划(批准号:91753104)资助的课题.
      Corresponding author: Hu Shu-Xin, hushuxin@iphy.ac.cn
    • Funds: Project supported by the Major Research Plan of the National Natural Science Foundation of China (Grant No. 91753104).
    [1]

    Golstein P 1998 Science 281 1283

    [2]

    Danial N N, Korsmeyer S J 2004 Cell 116 205

    [3]

    Lovell J F, Billen L P, Bindner S, Shamas-Din A, Fradin C, Leber B, Andrews D W 2008 Cell 135 1074

    [4]

    Shamas-Din A, Bindner S, Zhu W, Zaltsman Y, Campbell C, Gross A, Leber B, Andrews D W, Fradin C 2013 J. Biol. Chem. 288 22111

    [5]

    Subburaj Y, Cosentino K, Axmann M, Pedrueza-Villalmanzo E, Hermann E, Bleicken S, Spatz J, Garcia-Saez A J 2015 Nat. Commun. 6 8042

    [6]

    Roy M J, Vom A, Czabotar P E, Lessene G 2014 Br. J Pharmacol. 171 1973

    [7]

    Youle R J, Strasser A 2008 Nat. Rev. Mol. Cell Biol. 9 47

    [8]

    Czabotar P E, Lessene G, Strasser A, Adams J M 2014 Nat. Rev. Mol. Cell Biol. 15 49

    [9]

    Kaufmann T, Jost P J, Pellegrini M, Puthalakath H, Gugasyan R, Gerondakis S, Cretney E, Smyth M J, Silke J, Hakem R, Bouillet P, Mak T W, Dixit V M, Strasser A 2009 Immunity 30 56

    [10]

    Hutt K J 2015 Reproduction 149 R81

    [11]

    Billen L P, Shamas-Din A, Andrews D W 2009 Oncogene 27 S93

    [12]

    Kim H, Rafiuddin-Shah M, Tu H C, Jeffers J R, Zambetti G P, Hsieh J J, Cheng E H 2006 Nat. Cell Biol. 8 1348

    [13]

    Gross A, Yin X M, Wang K, Wei M C, Jockel J, Milliman C, Erdjument-Bromage H, Tempst P, Korsmeyer S J 1999 J. Biol. Chem. 274 1156

    [14]

    Tait S W, Green D R 2010 Nat. Rev. Mol. Cell Biol. 11 621

    [15]

    Li H L, Zhu H, Xu C J, Yuan J Y 1998 Cell 94 491

    [16]

    Wei M C, Lindsten T, Mootha V K, Weiler S, Gross A, Ashiya M, Thompson C B, Korsmeyer S J 2000 Gene. Dev. 14 2060

    [17]

    Eskes R, Desagher S, Antonsson B, Martinou J C 2000 Mol. Cell. Biol. 20 929

    [18]

    Happo L, Strasser A, Cory S 2012 J. Cell Sci. 125 1081

    [19]

    Billen L P, Kokoski C L, Lovell J F, Leber B, Andrews D W 2008 Plos Biol. 6 e147

    [20]

    Guicciardi M E, Bronk S F, Werneburg N W, Yin X M, Gores G J 2005 Gastroenterology 129 269

    [21]

    Schendel S L, Azimov R, Pawlwski K, Godzik A, Kagan B L, Reed J C 1999 J. Biol. Chem. 274 21932

    [22]

    Grinberg M, Sarig R, Zaltsman Y, Frumkin D, Grammatikakis N, Reuveny E, Gross A 2002 J. Biol. Chem. 277 12237

    [23]

    Zhao K, Zhou H J, Zhao X Y, Wolff D W, Tu Y P, Liu H L, Wei T T, Yang F Y 2012 J. Lipid Res. 53 2102

    [24]

    Shivakumar S, Kurylowicz M, Hirmiz N, Manan Y, Friaa O, Shamas-Din A, Masoudian P, Leber B, Andrews D W, Fradin C 2014 Biophys. J. 106 2085

    [25]

    Bleicken S, Hofhaus G, Ugarte-Uribe B, Schroder R, Garcia-Saez A J 2016 Cell Death Dis. 7 e2121

    [26]

    Li Y, Qian Z Y, Ma L, Hu S X, Nong D G, Xu C H, Ye F F, Lu Y, Wei G H, Li M 2016 Nat. Commun. 7 12906

    [27]

    Swathi R S, Sebastian K L 2008 J. Chem. Phys. 129 054703

    [28]

    Swathi R S, Sebastian K L 2009 J. Chem. Phys. 130 086101

    [29]

    Zhao J P, Pei S F, Ren W C, Gao L B, Cheng H M 2010 ACS Nano 4 5245

    [30]

    Hummers Jr W S, Offeman R E 1958 J. Am. Chem. Soc. 80 1339

    [31]

    Wang Y, Tjandra N 2013 J. Biol. Chem. 288 35840

    [32]

    Oh K J, Barbuto S, Meyer N, Kim R S, Collier R J, Korsmeyer S J 2005 J. Biol. Chem. 280 753

  • [1]

    Golstein P 1998 Science 281 1283

    [2]

    Danial N N, Korsmeyer S J 2004 Cell 116 205

    [3]

    Lovell J F, Billen L P, Bindner S, Shamas-Din A, Fradin C, Leber B, Andrews D W 2008 Cell 135 1074

    [4]

    Shamas-Din A, Bindner S, Zhu W, Zaltsman Y, Campbell C, Gross A, Leber B, Andrews D W, Fradin C 2013 J. Biol. Chem. 288 22111

    [5]

    Subburaj Y, Cosentino K, Axmann M, Pedrueza-Villalmanzo E, Hermann E, Bleicken S, Spatz J, Garcia-Saez A J 2015 Nat. Commun. 6 8042

    [6]

    Roy M J, Vom A, Czabotar P E, Lessene G 2014 Br. J Pharmacol. 171 1973

    [7]

    Youle R J, Strasser A 2008 Nat. Rev. Mol. Cell Biol. 9 47

    [8]

    Czabotar P E, Lessene G, Strasser A, Adams J M 2014 Nat. Rev. Mol. Cell Biol. 15 49

    [9]

    Kaufmann T, Jost P J, Pellegrini M, Puthalakath H, Gugasyan R, Gerondakis S, Cretney E, Smyth M J, Silke J, Hakem R, Bouillet P, Mak T W, Dixit V M, Strasser A 2009 Immunity 30 56

    [10]

    Hutt K J 2015 Reproduction 149 R81

    [11]

    Billen L P, Shamas-Din A, Andrews D W 2009 Oncogene 27 S93

    [12]

    Kim H, Rafiuddin-Shah M, Tu H C, Jeffers J R, Zambetti G P, Hsieh J J, Cheng E H 2006 Nat. Cell Biol. 8 1348

    [13]

    Gross A, Yin X M, Wang K, Wei M C, Jockel J, Milliman C, Erdjument-Bromage H, Tempst P, Korsmeyer S J 1999 J. Biol. Chem. 274 1156

    [14]

    Tait S W, Green D R 2010 Nat. Rev. Mol. Cell Biol. 11 621

    [15]

    Li H L, Zhu H, Xu C J, Yuan J Y 1998 Cell 94 491

    [16]

    Wei M C, Lindsten T, Mootha V K, Weiler S, Gross A, Ashiya M, Thompson C B, Korsmeyer S J 2000 Gene. Dev. 14 2060

    [17]

    Eskes R, Desagher S, Antonsson B, Martinou J C 2000 Mol. Cell. Biol. 20 929

    [18]

    Happo L, Strasser A, Cory S 2012 J. Cell Sci. 125 1081

    [19]

    Billen L P, Kokoski C L, Lovell J F, Leber B, Andrews D W 2008 Plos Biol. 6 e147

    [20]

    Guicciardi M E, Bronk S F, Werneburg N W, Yin X M, Gores G J 2005 Gastroenterology 129 269

    [21]

    Schendel S L, Azimov R, Pawlwski K, Godzik A, Kagan B L, Reed J C 1999 J. Biol. Chem. 274 21932

    [22]

    Grinberg M, Sarig R, Zaltsman Y, Frumkin D, Grammatikakis N, Reuveny E, Gross A 2002 J. Biol. Chem. 277 12237

    [23]

    Zhao K, Zhou H J, Zhao X Y, Wolff D W, Tu Y P, Liu H L, Wei T T, Yang F Y 2012 J. Lipid Res. 53 2102

    [24]

    Shivakumar S, Kurylowicz M, Hirmiz N, Manan Y, Friaa O, Shamas-Din A, Masoudian P, Leber B, Andrews D W, Fradin C 2014 Biophys. J. 106 2085

    [25]

    Bleicken S, Hofhaus G, Ugarte-Uribe B, Schroder R, Garcia-Saez A J 2016 Cell Death Dis. 7 e2121

    [26]

    Li Y, Qian Z Y, Ma L, Hu S X, Nong D G, Xu C H, Ye F F, Lu Y, Wei G H, Li M 2016 Nat. Commun. 7 12906

    [27]

    Swathi R S, Sebastian K L 2008 J. Chem. Phys. 129 054703

    [28]

    Swathi R S, Sebastian K L 2009 J. Chem. Phys. 130 086101

    [29]

    Zhao J P, Pei S F, Ren W C, Gao L B, Cheng H M 2010 ACS Nano 4 5245

    [30]

    Hummers Jr W S, Offeman R E 1958 J. Am. Chem. Soc. 80 1339

    [31]

    Wang Y, Tjandra N 2013 J. Biol. Chem. 288 35840

    [32]

    Oh K J, Barbuto S, Meyer N, Kim R S, Collier R J, Korsmeyer S J 2005 J. Biol. Chem. 280 753

  • [1] 张宇航, 薛振勇, 孙皓, 张珠伟, 陈虎. 酰基辅酶A结合蛋白去折叠动力学的单分子磁镊研究. 物理学报, 2023, 72(15): 158702. doi: 10.7498/aps.72.20230533
    [2] 樊秦凯, 杨晨光, 胡书新, 徐春华, 李明, 陆颖. 基于热还原氧化石墨烯的单分子表面诱导荧光衰逝技术. 物理学报, 2023, 72(14): 147801. doi: 10.7498/aps.72.20230450
    [3] 朱玉洁, 朱涛, 盛洁, 周琪, 蒋中英. 基于单畴表征的高/低黏滞磷脂膜中的相分离. 物理学报, 2022, 71(18): 188702. doi: 10.7498/aps.71.20220752
    [4] 马贝贝, 王凡, 林玲, 朱涛, 蒋中英. 全内反射荧光显微研究磷脂支撑膜形成中的片层前沿成长. 物理学报, 2022, 71(16): 168701. doi: 10.7498/aps.71.20220309
    [5] 王康, 徐成, 吴晋锋, 杨恺, 元冰. 蜂毒肽与单组分脂膜相互作用的单分子研究. 物理学报, 2021, 70(17): 178701. doi: 10.7498/aps.70.20210477
    [6] 杨颖, 宋俊杰, 万明威, 高靓辉, 方维海. 分子层次的金纳米棒-表面活性剂-磷脂自组装复合体形貌. 物理学报, 2020, 69(24): 248701. doi: 10.7498/aps.69.20200979
    [7] 张益溢, 吴佳琛, 郝然, 金尚忠, 曹良才. 基于数字全息的血红细胞显微成像技术. 物理学报, 2020, 69(16): 164201. doi: 10.7498/aps.69.20200357
    [8] 马东飞, 侯文清, 徐春华, 赵春雨, 马建兵, 黄星榞, 贾棋, 马璐, 刘聪, 李明, 陆颖. 脂质体包裹荧光受体方法研究α-突触核蛋白在磷脂膜上的结构和动态特征. 物理学报, 2020, 69(3): 038701. doi: 10.7498/aps.69.20191607
    [9] 陆越, 马建兵, 滕翠娟, 陆颖, 李明, 徐春华. 单分子动力学研究大肠杆菌单链结合蛋白与单链DNA的结合过程. 物理学报, 2018, 67(8): 088201. doi: 10.7498/aps.67.20180109
    [10] 李鹏飞, 曹毅, 秦猛, 王炜. 钙离子调控微丝切割蛋白中A6亚基解折叠的单分子力谱研究. 物理学报, 2017, 66(19): 196201. doi: 10.7498/aps.66.196201
    [11] 曹博智, 林瑜, 王艳伟, 杨光参. 抗生物素蛋白与DNA相互作用的单分子研究. 物理学报, 2016, 65(14): 140701. doi: 10.7498/aps.65.140701
    [12] 周浩天, 高翔, 郑鹏, 秦猛, 曹毅, 王炜. 弹性蛋白力学特性的单分子力谱. 物理学报, 2016, 65(18): 188703. doi: 10.7498/aps.65.188703
    [13] 盛洁, 张国梁, 李玉强, 朱涛, 蒋中英. 荧光显微镜研究极端pH值诱导磷脂支撑膜的侧向再组织. 物理学报, 2014, 63(6): 068702. doi: 10.7498/aps.63.068702
    [14] 陆乃彦, 元冰, 杨恺. 带电多孔二氧化硅纳米颗粒在硫醇/磷脂混合双层膜上的非特异性吸附. 物理学报, 2013, 62(17): 178701. doi: 10.7498/aps.62.178701
    [15] 张洪玉, 张韶华, 梁鹤, 刘宇宏, 雒建斌. 纳米级润滑膜分子排列取向的拉曼光谱表征技术. 物理学报, 2011, 60(9): 098109. doi: 10.7498/aps.60.098109
    [16] 陈丹妮, 刘磊, 于斌, 牛憨笨. HeLa细胞突起中微丝束的纳米分辨荧光成像. 物理学报, 2010, 59(10): 6948-6954. doi: 10.7498/aps.59.6948
    [17] 邓 闯, 翁渝民, 徐至中, 费 伦. 胶原蛋白分子中电场激发的孤子特性. 物理学报, 2005, 54(5): 2429-2434. doi: 10.7498/aps.54.2429
    [18] 刘玉颖, 窦硕星, 王鹏业, 谢 平, 王渭池. 应用分子梳技术对DNA与组蛋白相互作用的研究. 物理学报, 2005, 54(2): 622-627. doi: 10.7498/aps.54.622
    [19] 阎循领, 董瑞新, 王伯运, 胡海泉, 徐炳振. α螺旋蛋白质分子Raman光谱的选择定则. 物理学报, 1998, 47(12): 1963-1967. doi: 10.7498/aps.47.1963
    [20] 普小云, 柳清菊, 张中明, 林理忠. 表面单分子膜的垂悬液滴方法研究. 物理学报, 1998, 47(1): 60-67. doi: 10.7498/aps.47.60
计量
  • 文章访问数:  5200
  • PDF下载量:  89
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-15
  • 修回日期:  2018-04-09
  • 刊出日期:  2019-07-20

/

返回文章
返回