搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于简正波分解的不同阵列匹配场定位性能分析

贾雨晴 苏林 郭圣明 马力

引用本文:
Citation:

基于简正波分解的不同阵列匹配场定位性能分析

贾雨晴, 苏林, 郭圣明, 马力

Performance analysis of matched field processing localization with various line array configurations based on normal mode decomposition

Jia Yu-Qing, Su Lin, Guo Sheng-Ming, Ma Li
PDF
导出引用
  • 针对利用不同阵列对浅海环境中水下目标的定位问题,基于简正波分解方法,对组合阵的目标声源定位性能进行了研究,着力解决在实际实验环境下定位性能不够高的问题,并降低实验设备布放难度.在浅海环境下,基于匹配场理论的声接收阵可实现目标的定位,但定位性能受阵形、阵元数目等影响.通过研究不同声接收阵的简正波分解矩阵,可以有效辨别不同阵形定位性能的优劣.仿真实验表明,当某一子阵简正波分解效果较差时,会降低组合阵的定位性能.基于实际实验的需求,在对短垂直阵和组合阵性能的研究中发现,由于水平阵对接收声场的定位模糊度函数中的旁瓣有抑制效果,从而造成模糊度函数表面上旁瓣较低,定位目标的主旁瓣比有所提升的现象.仿真实验表明,不同组合阵形的定位准确度均在90%以上,基于实际应用的考虑,组合阵无疑是对定位性能和实验复杂度的折中选择.
    Various line array configurations are evaluated for the source localization performance based on the analysis of mode decomposition matrix in this paper. The guideline of array shape design focuses on improving the localization performance of matched filed processing, meanwhile reducing the difficulty of deploying equipment in practical experiments. In the shallow water environment, when the environment is well known, the source localization result can be obtained by matched field processing algorithms effectively, but the source localization performance is affected by the array parameters, such as array length, the number of sensors, and the configurations of various horizontal and vertical line arrays. The modal decomposition method provides a useful insight into the questions of how many modes are needed and how to design the array to resolve the modes. Therefore, the method of utilizing a normal mode acoustic propagation model to decompose mode is proposed by vertical line array, horizontal line array and combined array respectively. Then we can evaluate the source localization performance of various line array configurations by studying the characteristic of normal mode decomposition matrix, thus establishing a qualitative or even quantitative relationship between each other. The more the normal mode decomposition matrix tends to be diagonalized, the better performance of line array localization will be obtained. Simulation results show that the localization performance of matched field processing with the combined arrays will be severely degraded when the mode amplitudes cannot be accurately deduced by one of the sub-arrays. Considering the requirements for the practical experiments and various environments, the source localization performance of short vertical line array and combined array are mainly discussed in this paper. The combined array can increase the azimuth and depth information of the source and realize three-dimensional target detection while the vertical array provides range-depth information and the horizontal array provides bearing information. Simulation result indicates that the design guidelines based on the normal mode decomposition are appropriate for arrays employed for matched filed processing. Meanwhile, the combined arrays perform better than the short vertical array, which is benefited by the horizontal array's suppressing the side lobes, which leads the ratio of peak to sidelobe to increase, and thus improving the location accuracy. The values of localization accuracy of combined arrays are all above 90% according to the simulation experiment. Take the practical application into account, the combined array is undoubtedly a compromise choice for the localization performance and the test complexity.
      通信作者: 苏林, sulin807@mail.ioa.ac.cn
    • 基金项目: 国家自然科学基金(批准号:Y11704396)和中国科学院声学研究所青年基金(批准号:CXJJ-16S057)资助的课题.
      Corresponding author: Su Lin, sulin807@mail.ioa.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. Y11704396) and the Institute of Acoustics, Chinese Academy of Sciences for Youth (Grant No. CXJJ-16S057).
    [1]

    Gemba K L, Hodgkiss W S, Gerstoft P 2017 J. Acoust. Soc. Am. 141 92

    [2]

    Li X M, Zhang M H, Zhang H G, Piao S C, Liu Y Q, Zhou J B 2017 Acta Phys. Sin. 66 094302 (in Chinese)[李晓曼, 张明辉, 张海刚, 朴胜春, 刘亚琴, 周建波 2017 物理学报 66 094302]

    [3]

    Yao M J, Lu L C, Ma L, Guo S M 2016 Acta Acust. 41 73 (in Chinese)[姚美娟, 鹿力成, 马力, 郭圣明 2016 声学学报 41 73]

    [4]

    Su L, Sun B W, Guo S M, Ma L 2015 Acta Acust. 40 799 (in Chinese)[苏林, 孙炳文, 郭圣明, 马力 2015 声学学报 40 799]

    [5]

    Wang H Z, Wang N, Gao D Z, Gao B 2016 Chin. Phys. Lett. 33 044301

    [6]

    Gemba K L, Nannuru S, Gerstoft P, Hodgkiss W S 2017 J. Acoust. Soc. Am. 141 3411

    [7]

    Yang K D, Ma Y L, Zou S X 2006 Acta Acust. 31 496 (in Chinese)[杨坤德, 马远良, 邹士鑫 2006 声学学报 31 496]

    [8]

    Li Q Q, Li Z L, Zhang R H 2013 Chin. Phys. Lett. 30 024301

    [9]

    Dosso S E, Sotirin B J 1999 J. Acoust. Soc. Am. 106 3445

    [10]

    Worthmann B M, Song H C, Dowling D R 2017 J. Acoust. Soc. Am. 141 543

    [11]

    Conan E, Bonnel J, Chonavel T, Nicolas B 2016 J. Acoust. Soc. Am. 140 EL434

    [12]

    Heaney K D, Campbell C R, Baggeroer A B, D'Spain G L, Worcester P, Dzieciuch M A 2010 J. Acoust. Soc. Am. 128 2386

    [13]

    Booth N O, Schey P W, Hodgkiss W S 1997 J. Acoust. Soc. Am. 102 3170

    [14]

    Kim K, Seong W, Lee K, Kim S, Shimless 2009 J. Acoust. Soc. Am. 125 735

    [15]

    Zhang T W, Yang K D, Ma Y L, Li X G 2010 Acta Phys. Sin. 59 3294 (in Chinese)[张同伟, 杨坤德, 马远良, 黎雪刚 2010 物理学报 59 3294]

    [16]

    Chapman R, Hudson D 2000 J. Acoust. Soc. Am. 108 2536

    [17]

    Tracey B, Lee N, Zurk L, Ward J 2000 J. Acoust. Soc. Am. 108 2645

    [18]

    Zurk L M, Ward J 2000 J. Acoust. Soc. Am. 107 2889

    [19]

    Peng S, Yuan R, Xu G G 2015 Ship Science and Technology 37 121 (in Chinese)[彭水, 袁蓉, 徐国贵 2015 舰船科学技术 37 121]

    [20]

    Ge H L, Gong X Y, Li R W 2001 China Youth Conference 2001 Acoustic Society[CYCA'01] Shanghai, China, November 3-6, 2001 p122

    [21]

    Liu F X, Pan X, Gong X Y 2013 J. Zhejiang Univ. (Eng. Sci.) 47 62 (in Chinese)[刘凤霞, 潘翔, 宫先仪 2013 浙江大学学报(工学版) 47 62]

    [22]

    Zheng S J 2014 Audio Eng. 38 54 (in Chinese)[郑胜家 2014 电声技术 38 54]

    [23]

    Wang X Z, Tu Y, Wu K T, Wu J R, Cai H Z 2012 Acta Armam. 33 927 (in Chinese)[王学志, 涂英, 吴克桐, 吴金荣, 蔡惠智 2012 兵工学报 33 927]

    [24]

    Bai M R, Lai C S, Wu P C 2017 J. Acoust. Soc. Am. 142 286

    [25]

    Chapman N R, Yeremy M L 1994 J. Acoust. Soc. Am. 2 315

  • [1]

    Gemba K L, Hodgkiss W S, Gerstoft P 2017 J. Acoust. Soc. Am. 141 92

    [2]

    Li X M, Zhang M H, Zhang H G, Piao S C, Liu Y Q, Zhou J B 2017 Acta Phys. Sin. 66 094302 (in Chinese)[李晓曼, 张明辉, 张海刚, 朴胜春, 刘亚琴, 周建波 2017 物理学报 66 094302]

    [3]

    Yao M J, Lu L C, Ma L, Guo S M 2016 Acta Acust. 41 73 (in Chinese)[姚美娟, 鹿力成, 马力, 郭圣明 2016 声学学报 41 73]

    [4]

    Su L, Sun B W, Guo S M, Ma L 2015 Acta Acust. 40 799 (in Chinese)[苏林, 孙炳文, 郭圣明, 马力 2015 声学学报 40 799]

    [5]

    Wang H Z, Wang N, Gao D Z, Gao B 2016 Chin. Phys. Lett. 33 044301

    [6]

    Gemba K L, Nannuru S, Gerstoft P, Hodgkiss W S 2017 J. Acoust. Soc. Am. 141 3411

    [7]

    Yang K D, Ma Y L, Zou S X 2006 Acta Acust. 31 496 (in Chinese)[杨坤德, 马远良, 邹士鑫 2006 声学学报 31 496]

    [8]

    Li Q Q, Li Z L, Zhang R H 2013 Chin. Phys. Lett. 30 024301

    [9]

    Dosso S E, Sotirin B J 1999 J. Acoust. Soc. Am. 106 3445

    [10]

    Worthmann B M, Song H C, Dowling D R 2017 J. Acoust. Soc. Am. 141 543

    [11]

    Conan E, Bonnel J, Chonavel T, Nicolas B 2016 J. Acoust. Soc. Am. 140 EL434

    [12]

    Heaney K D, Campbell C R, Baggeroer A B, D'Spain G L, Worcester P, Dzieciuch M A 2010 J. Acoust. Soc. Am. 128 2386

    [13]

    Booth N O, Schey P W, Hodgkiss W S 1997 J. Acoust. Soc. Am. 102 3170

    [14]

    Kim K, Seong W, Lee K, Kim S, Shimless 2009 J. Acoust. Soc. Am. 125 735

    [15]

    Zhang T W, Yang K D, Ma Y L, Li X G 2010 Acta Phys. Sin. 59 3294 (in Chinese)[张同伟, 杨坤德, 马远良, 黎雪刚 2010 物理学报 59 3294]

    [16]

    Chapman R, Hudson D 2000 J. Acoust. Soc. Am. 108 2536

    [17]

    Tracey B, Lee N, Zurk L, Ward J 2000 J. Acoust. Soc. Am. 108 2645

    [18]

    Zurk L M, Ward J 2000 J. Acoust. Soc. Am. 107 2889

    [19]

    Peng S, Yuan R, Xu G G 2015 Ship Science and Technology 37 121 (in Chinese)[彭水, 袁蓉, 徐国贵 2015 舰船科学技术 37 121]

    [20]

    Ge H L, Gong X Y, Li R W 2001 China Youth Conference 2001 Acoustic Society[CYCA'01] Shanghai, China, November 3-6, 2001 p122

    [21]

    Liu F X, Pan X, Gong X Y 2013 J. Zhejiang Univ. (Eng. Sci.) 47 62 (in Chinese)[刘凤霞, 潘翔, 宫先仪 2013 浙江大学学报(工学版) 47 62]

    [22]

    Zheng S J 2014 Audio Eng. 38 54 (in Chinese)[郑胜家 2014 电声技术 38 54]

    [23]

    Wang X Z, Tu Y, Wu K T, Wu J R, Cai H Z 2012 Acta Armam. 33 927 (in Chinese)[王学志, 涂英, 吴克桐, 吴金荣, 蔡惠智 2012 兵工学报 33 927]

    [24]

    Bai M R, Lai C S, Wu P C 2017 J. Acoust. Soc. Am. 142 286

    [25]

    Chapman N R, Yeremy M L 1994 J. Acoust. Soc. Am. 2 315

  • [1] 徐小虎, 陈永强, 郭志伟, 孙勇, 苗向阳. 等效零折射率材料微腔中均匀化腔场作用下的简正模劈裂现象. 物理学报, 2018, 67(2): 024210. doi: 10.7498/aps.67.20171880
    [2] 范洪义, 吴泽. 二项-负二项组合光场态的光子统计性质及其在量子扩散通道中的生成. 物理学报, 2015, 64(8): 080303. doi: 10.7498/aps.64.080303
    [3] 张同伟, 杨坤德. 一种水平变化波导中匹配场定位的虚拟时反实现方法. 物理学报, 2014, 63(21): 214303. doi: 10.7498/aps.63.214303
    [4] 孟宗, 付立元, 宋明厚. 一类非线性相对转动系统的组合谐波分岔行为研究. 物理学报, 2013, 62(5): 054501. doi: 10.7498/aps.62.054501
    [5] 刘青伦, 王自成, 刘濮鲲, 董芳. 基于场匹配法的双排矩形栅慢波结构高频特性研究. 物理学报, 2012, 61(24): 244102. doi: 10.7498/aps.61.244102
    [6] 黄峰, 李鹏程, 周效信. 利用两色组合激光场驱动氦原子产生单个阿秒脉冲. 物理学报, 2012, 61(23): 233203. doi: 10.7498/aps.61.233203
    [7] 曹卫军, 成春芝, 周效信. 原子在双色组合场中产生高次谐波的转换效率与激光波长的关系. 物理学报, 2011, 60(5): 054210. doi: 10.7498/aps.60.054210
    [8] 李伟, 王国利, 周效信. 啁啾激光与半周期脉冲形成的组合场驱动原子产生单个阿秒脉冲. 物理学报, 2011, 60(12): 123201. doi: 10.7498/aps.60.123201
    [9] 张同伟, 杨坤德, 马远良, 黎雪刚. 浅海中水平线列阵深度对匹配场定位性能的影响. 物理学报, 2010, 59(5): 3294-3301. doi: 10.7498/aps.59.3294
    [10] 陈东, 余本海, 汤清彬. 中红外组合激光场调控宽带超连续谱的产生. 物理学报, 2010, 59(7): 4564-4570. doi: 10.7498/aps.59.4564
    [11] 叶小亮, 周效信, 赵松峰, 李鹏程. 原子在两色组合激光场中产生的单个阿秒脉冲. 物理学报, 2009, 58(3): 1579-1585. doi: 10.7498/aps.58.1579
    [12] 余 赟, 惠俊英, 赵安邦, 孙国仓, 滕 超. Pekeris波导中简正波的复声强及其应用. 物理学报, 2008, 57(9): 5742-5748. doi: 10.7498/aps.57.5742
    [13] 黄思训, 蔡其发, 项 杰, 张 铭. 台风风场分解. 物理学报, 2007, 56(5): 3022-3027. doi: 10.7498/aps.56.3022
    [14] 王永龙, 李子平, 许长谭. 组合Bose场的分数自旋和分数统计性. 物理学报, 2006, 55(5): 2149-2151. doi: 10.7498/aps.55.2149
    [15] 龚志强, 邹明玮, 高新全, 董文杰. 基于非线性时间序列分析经验模态分解和小波分解异同性的研究. 物理学报, 2005, 54(8): 3947-3957. doi: 10.7498/aps.54.3947
    [16] 罗勇, 李宏福, 谢仲怜, 喻胜, 邓学, 赵青, 徐勇. 含有吸收介质的突变结构腔体场匹配分析. 物理学报, 2004, 53(1): 229-234. doi: 10.7498/aps.53.229
    [17] 李永民, 樊巧云, 张宽收, 谢常德, 彭堃墀. 三共振准相位匹配光学参量振荡器反射抽运场的正交位相压缩. 物理学报, 2001, 50(8): 1492-1495. doi: 10.7498/aps.50.1492
    [18] 何林生, 江海河. 组合光场增强压缩真空场中原子冷却作用. 物理学报, 1995, 44(12): 1904-1913. doi: 10.7498/aps.44.1904
    [19] 张仁和, 朱柏贤. 指向性辐射器的简正波声场. 物理学报, 1983, 32(4): 490-496. doi: 10.7498/aps.32.490
    [20] 张仁和. 浅海表面声道中的简正波声场. 物理学报, 1975, 24(3): 200-209. doi: 10.7498/aps.24.200
计量
  • 文章访问数:  4486
  • PDF下载量:  85
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-17
  • 修回日期:  2018-05-15
  • 刊出日期:  2018-09-05

/

返回文章
返回