搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

晶格弛豫方法研究PbSe量子点的带内弛豫过程

梁宇宏 李红娟 尹辑文

引用本文:
Citation:

晶格弛豫方法研究PbSe量子点的带内弛豫过程

梁宇宏, 李红娟, 尹辑文

Intraband relaxation process in PbSe quantum dot studied by lattice relaxation method

Liang Yu-Hong, Li Hong-Juan, Yin Ji-Wen
PDF
HTML
导出引用
  • 在晶格弛豫理论框架内, 电子-体纵光学声子耦合的Fröhlich模型基础上, 系统研究了PbSe量子点的3个最低激发态之间及其与基态之间的带内弛豫过程. 具体讨论了各个弛豫过程中的黄-里斯因子、弛豫率与量子点半径的变化关系, 进一步讨论了弛豫率的温度依赖性. 得出的理论结果很好地解释了相应的实验.
    Within the frame of lattice relaxation model, several intraband relaxation processes between the three lowest excited states and ground state in a PbSe quantum dot are studied based on the electron-longitudinal optical phonon coupling via Fröhlich mechanism. We find that Huang-Rhys factors decrease with the radius of quantum dot increasing in different relaxation processes. More important is the fact that the obtained values of Huang-Rhys factors satisfy the experimental measurements in the strong coupling limit. These intraband relaxation processes follow the asymmetrical Gaussian distribution with respect to the radius, in which the probabilities with which these intraband relaxation transitions occur are different. Among these relaxation processes, two intraband transitions from the third excited state to ground state and to second excited states dominate the relaxation processes on a several nanometer scale of radius. Moreover, the temperature dependence for each of these relaxation processes can be modulated by the radius of quantum dot. These theoretical results are consistent with the experimental measurements and provide an important insight into the intraband relaxation in quantum dots in experiments.
      通信作者: 尹辑文, yinjiwen1962@126.com
    • 基金项目: 国家自然科学基金(批准号: 11264001)资助的课题.
      Corresponding author: Yin Ji-Wen, yinjiwen1962@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11264001).
    [1]

    Andrew F F, Gao J B, Victor I K 2017 Nat. Phys. 13 604Google Scholar

    [2]

    Frank C M S, Stanko T, Arjan J. H, Laurens D A S 2017 ACS Nano 11 6286Google Scholar

    [3]

    Jeffrey M P, Young S P, Jaehoon L, Andrew F F, Wan K B, Sergio B, Victor I K 2016 Chem. Rev. 116 10513Google Scholar

    [4]

    Aaron G M, Joseph M L, John T S, Danielle K S, Lazaro A P, Victor I K, Arthur J N, Matthew C B 2013 Nano Lett. 13 3078Google Scholar

    [5]

    Avila L M, Tritsch J R, Wolcott A, Chan W L, Nelson C A, Zhu X Y 2012 Nano Lett. 12 1588Google Scholar

    [6]

    Svetlana V K, Dmitri S K, Victor V P, Oleg V P 2011 J. Phys. Chem. C 115 21641Google Scholar

    [7]

    Schaller R D, Klimov V I 2004 Phys. Rev. Lett. 92 186601Google Scholar

    [8]

    Moonsub S, Philippe G S 2001 Phys. Rev. B 64 245342Google Scholar

    [9]

    Wang L W, Califano M, Zunger A, Alberto F 2003 Phys. Rev. Lett. 91 056404Google Scholar

    [10]

    Victor I K 2000 J. Phys. Chem. B 104 6112Google Scholar

    [11]

    Brian L W, Wang C J, Philippe G S 2002 J. Phys. Chem. B 106 10634Google Scholar

    [12]

    Schaller R D, Pietryga J M, Goupalov S V, Melissa A P, Sergei A I,Victor I K 2005 Phys. Rev. Lett. 95 196401Google Scholar

    [13]

    Bonati C, Cannizzo A, Tonti D, Tortschanoff A, Mourik F, Chergui M 2007 Phys. Rev. B 76 033304Google Scholar

    [14]

    Jeffrey M H, Du H, Krauss T D, Cho K S, Murray C B, Wise F W 2005 Phys. Rev. B 72 195312Google Scholar

    [15]

    Li X Q, Arakawa Y 1997 Phys. Rev. B 56 10423Google Scholar

    [16]

    Schroeter D F, Griffiths D J, Sercel P C 1996 Phys. Rev. B 54 1486Google Scholar

    [17]

    Philippe G S, Brian W, Dong Y 2005 J. Chem. Phys. 123 074709Google Scholar

    [18]

    Huang K, Rhys A 1950 Pro. Roy. Soc. A 204 406

    [19]

    Huang K 1981 Prog. Phys. 1 31

    [20]

    Huang K 1985 Sci. Chin. 1 1

    [21]

    Li X Q, Arakawa Y 1999 Phys. Rev. B 60 1915Google Scholar

    [22]

    Soma C M A 1999 J. Phys.: Condens. Matter 11 2071Google Scholar

    [23]

    Bulaev D V, Loss D 2007 Phys. Rev. Lett. 98 097202Google Scholar

    [24]

    Vitaly N G, Alexander K, Loss D 2008 Phys. Rev. B 77 045328Google Scholar

    [25]

    Ridley B K 1982 Quantum Processes in Semiconductors (Oxford: Oxford University Press) p233

    [26]

    Jdira L, Overgaag K, Stiufiuc R, Grandidier B, Delerue C, Speller S, Vanmaekelbergh D 2008 Phys. Rev. B 77 205308Google Scholar

    [27]

    Goupalov S V 2005 Phys. Rev. B 72 073301Google Scholar

    [28]

    Norris D J, Efros A L, Rosen M, Bawendi M G 1996 Phys. Rev. B 53 16347Google Scholar

    [29]

    Poddubny A N, Goupalov S V 2008 Phys. Rev. B 77 075315Google Scholar

  • 图 1  (a) PbSe量子点中电子的基态(G)与3个最低的激发态(I, II, III)位型坐标关系; (b) 6种带内弛豫过程的黄-里斯因子与量子点半径的关系

    Fig. 1.  (a) Configuration coordinates for the ground state (G) and three lowest excited states (I, II, III) of electron in PbSe quantum dot; (b) Huang-Rhys factors as a function of the radius of quantum dot for six types of intraband relaxation processes.

    图 2  不同温度下, PbSe量子点中带内弛豫率与半径的依赖关系 (a) 5 K; (b) 300 K

    Fig. 2.  Intraband relaxation rates as a function of the radius of PbSe quantum dot at different temperature: (a) 5 K; (b) 300 K.

    图 3  在不同的量子点半径下, 弛豫率与温度的变化关系 (a) ${W_{{\rm{II}} \text{-} {\rm{G}}}}$; (b) ${W_{{\rm{II}} \text{-} {\rm{I}}}}$; (c) ${W_{{\rm{III}} \text{-} {\rm{I}}}}$; (d) ${W_{{\rm{III}} \text{-} {\rm{G}}}}$; (e) ${W_{{\rm{III}} \text{-} {\rm{II}}}}$

    Fig. 3.  Relaxation rates as a function of the temperature at different radii of quantum dot: (a) ${W_{{\rm{II}} \text{-} {\rm{G}}}}$; (b) ${W_{{\rm{II}} \text{-} {\rm{I}}}}$; (c) ${W_{{\rm{III}} \text{-} {\rm{I}}}}$; (d) ${W_{{\rm{III}} \text{-} {\rm{G}}}}$; (e) ${W_{{\rm{III}} \text{-} {\rm{II}}}}$.

  • [1]

    Andrew F F, Gao J B, Victor I K 2017 Nat. Phys. 13 604Google Scholar

    [2]

    Frank C M S, Stanko T, Arjan J. H, Laurens D A S 2017 ACS Nano 11 6286Google Scholar

    [3]

    Jeffrey M P, Young S P, Jaehoon L, Andrew F F, Wan K B, Sergio B, Victor I K 2016 Chem. Rev. 116 10513Google Scholar

    [4]

    Aaron G M, Joseph M L, John T S, Danielle K S, Lazaro A P, Victor I K, Arthur J N, Matthew C B 2013 Nano Lett. 13 3078Google Scholar

    [5]

    Avila L M, Tritsch J R, Wolcott A, Chan W L, Nelson C A, Zhu X Y 2012 Nano Lett. 12 1588Google Scholar

    [6]

    Svetlana V K, Dmitri S K, Victor V P, Oleg V P 2011 J. Phys. Chem. C 115 21641Google Scholar

    [7]

    Schaller R D, Klimov V I 2004 Phys. Rev. Lett. 92 186601Google Scholar

    [8]

    Moonsub S, Philippe G S 2001 Phys. Rev. B 64 245342Google Scholar

    [9]

    Wang L W, Califano M, Zunger A, Alberto F 2003 Phys. Rev. Lett. 91 056404Google Scholar

    [10]

    Victor I K 2000 J. Phys. Chem. B 104 6112Google Scholar

    [11]

    Brian L W, Wang C J, Philippe G S 2002 J. Phys. Chem. B 106 10634Google Scholar

    [12]

    Schaller R D, Pietryga J M, Goupalov S V, Melissa A P, Sergei A I,Victor I K 2005 Phys. Rev. Lett. 95 196401Google Scholar

    [13]

    Bonati C, Cannizzo A, Tonti D, Tortschanoff A, Mourik F, Chergui M 2007 Phys. Rev. B 76 033304Google Scholar

    [14]

    Jeffrey M H, Du H, Krauss T D, Cho K S, Murray C B, Wise F W 2005 Phys. Rev. B 72 195312Google Scholar

    [15]

    Li X Q, Arakawa Y 1997 Phys. Rev. B 56 10423Google Scholar

    [16]

    Schroeter D F, Griffiths D J, Sercel P C 1996 Phys. Rev. B 54 1486Google Scholar

    [17]

    Philippe G S, Brian W, Dong Y 2005 J. Chem. Phys. 123 074709Google Scholar

    [18]

    Huang K, Rhys A 1950 Pro. Roy. Soc. A 204 406

    [19]

    Huang K 1981 Prog. Phys. 1 31

    [20]

    Huang K 1985 Sci. Chin. 1 1

    [21]

    Li X Q, Arakawa Y 1999 Phys. Rev. B 60 1915Google Scholar

    [22]

    Soma C M A 1999 J. Phys.: Condens. Matter 11 2071Google Scholar

    [23]

    Bulaev D V, Loss D 2007 Phys. Rev. Lett. 98 097202Google Scholar

    [24]

    Vitaly N G, Alexander K, Loss D 2008 Phys. Rev. B 77 045328Google Scholar

    [25]

    Ridley B K 1982 Quantum Processes in Semiconductors (Oxford: Oxford University Press) p233

    [26]

    Jdira L, Overgaag K, Stiufiuc R, Grandidier B, Delerue C, Speller S, Vanmaekelbergh D 2008 Phys. Rev. B 77 205308Google Scholar

    [27]

    Goupalov S V 2005 Phys. Rev. B 72 073301Google Scholar

    [28]

    Norris D J, Efros A L, Rosen M, Bawendi M G 1996 Phys. Rev. B 53 16347Google Scholar

    [29]

    Poddubny A N, Goupalov S V 2008 Phys. Rev. B 77 075315Google Scholar

计量
  • 文章访问数:  6672
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-02
  • 修回日期:  2019-04-04
  • 上网日期:  2019-06-01
  • 刊出日期:  2019-06-20

/

返回文章
返回