|
|
AlSb/GaAs(001)失配位错的高分辨电子显微学研究 |
邹进1, 温才2, 李方华2, 陈弘2 |
(1)Centre for Microscopy and Microanalysis and Materials Engineering,The University of Queensland,St. Lucia Queensland 4072,Australia; (2)中国科学院物理研究所北京凝聚态物理国家实验室,北京 100190 |
High-resolution electron microscopy of misfit dislocations in AlSb/GaAs(001) system |
Zou Jin1, Wen Cai2, Li Fang-Hua2, Chen Hong2 |
(1)Centre for Microscopy and Microanalysis and Materials Engineering,The University of Queensland,St. Lucia Queensland 4072,Australia; (2)中国科学院物理研究所北京凝聚态物理国家实验室,北京 100190 |
|
摘要: 用200 kV 六硼化镧光源的高分辨透射电子显微镜观察了AlSb/GaAs(001)外延薄膜的失配位错,结合解卷处理方法把[110]高分辨电子显微像转换为试样的结构投影图,其分辨率接近电子显微镜的信息极限.根据赝弱相位物体近似像衬理论,通过分析AlSb薄膜完整区解卷像的衬度随试样厚度的变化,确定了哑铃原子对中Al和Sb原子的位置.在此基础上构建出失配位错的结构模型,再结合模拟像与实验像的匹配,确定了AlAs型界面以及Lomer和60°两类失配全位错的核心结构.
关键词:
高分辨电子显微像
解卷处理
界面
失配位错
|
|
Abstract: The detailed core structures of misfit dislocations in the AlSb/GaAs(001) heterostructure system were studied by 200 kV LaB6 filament high-resolution electron microscope. In combination with image deconvolution, the[110] images were transformed into the projected structure maps, and the image resolution was enhanced up to the information limit of the microscope. To distinguish Al and Sb atoms in the AlSb film, the image contrast change with the sample thickness was analyzed for the perfect region in deconvoluted image, and the positions of Al and Sb atoms in the dumbbells were determined based on the image contrast theory of the pseudo-weak-phase object approximation. Then the structure models of two types of misfit dislocations were constructed. As the simulated images are in good agreement with the experimental images, the AlAs type interface and the core structures of obtained Lomer and 60° misfit dislocations were determined.
Keywords:
high-resolution electron microscopic image
image deconvolution
interface
misfit dislocation
|
收稿日期: 2009-12-21
出版日期: 2010-03-15
|
|
基金: 国家自然科学基金(批准号:50672124)资助的课题. |
引用本文: |
温才,李方华,邹进 等 . AlSb/GaAs(001)失配位错的高分辨电子显微学研究. 物理学报, 2010, 59(3): 1937.
|
Cite this article: |
Wen Cai,Li Fang-Hua,Zou Jin et al. High-resolution electron microscopy of misfit dislocations in AlSb/GaAs(001) system. Acta Phys. Sin., 2010, 59(3): 1928-1937.
|
|
|
|
URL: |
http://wulixb.iphy.ac.cn/CN/Y2010/V59/I3/1928 |
[1] | KKroemer H 2004 Physica E 20 196
|
[2] | SSubbanna S, Gaines J, Tuttle G, Kroemer H, Chalmers S, English J H 1989 J. Vac. Sci. Technol. B 7 289
|
[3] | KKim H S, Noh Y K, Kim M D, Kwon Y J, Oh J E, Kim Y H, Lee J Y, Kim S G, Chung K S 2007 J. Cryst. Growth 301-302 230[4]Lomer W M 1951 Philos. Mag. 42 1327
|
[5] | MMarshall A F, Aubertine D B, Nix W D, McIntyre P C 2005 J. Mater. Res. 20 447
|
[6] | TTillmann K, Houben L, Thust A 2006 Philos. Mag. 86 4589
|
[7] | QQian W, Skowronski M, Kaspi R, de Graef M, Dravid V P 1997 J. Appl. Phys. 81 7268
|
[8] | JJallipalli A, Balakrishnan G, Huang S H, Khoshakhlagh A, Dawson L R, Huffaker D L 2007 J. Cryst. Growth 303 449
|
[9] | TTrampert A, Tournie E, Ploog K H 1995 Appl. Phys. Lett. 66 2265
|
[10] | Chen F R, Kai J J, Chang L, Wang J Y, Chen W J 1999 J. Electron Microsc. 48 827
|
[11] | He W Z, Li F H, Chen H, Kawasaki K, Oikawa T 1997 Ultramicroscopy 70 1
|
[12] | Wang D, Zou J, He W Z, Chen H, Li F H, Kawasaki K, Oikawa T 2004 Ultramicroscopy 98 259
|
[13] | Wang D, Chen H, Li F H, Kawasaki K, Oikawa T 2002 Ultramicroscopy 93 139
|
[14] | Scherzer O 1949 J. Appl. Phys. 20 20
|
[15] | Han F S, Fan H F, Li F H 1986 Acta Crystallogr. A 42 353
|
[16] | Hu J J, Li F H 1991 Ultramicroscopy 35 339
|
[17] | Li F H, Wang D, He W Z, Jiang H 2000 J. Electron Microsc. 49 17
|
[18] | Tang C Y, Li F H, Wang R, Zou J, Zheng X H, Liang J W 2007 Phys. Rev. B 75 184103
|
[19] | Li F H, Tang D 1985 Acta Crystallogr. A 41 376
|
[20] | Thon F 1966 Z. Naturforsch. 210 476
|
[21] | Hornstra J 1958 J. Phys. Chem. Solids 5 129
|
[22] | Vila A, Cornet A, Morante J R, Ruterana P, Loubradou M, Bonnet R, Gonzalez Y, Gonzalez L 1995 Philos. Mag. A 71 85
|
[23] | Lopatin S, Pennycook S J, Narayan J, Duscher G 2002 Appl. Phys. Lett. 81 2728
|
[24] | Hull D, Bacon D J 2001 Introduction to Dislocations (Oxford: Butterworth-Heinemann) p123[25]Zou J, Cockayne D J H 1993 J. Appl. Phys. 74 925
|
[26] | Zou J, Cockayne D J H 1993 Appl. Phys. Lett. 63 2222
|
[27] | Cowley J M, Moodie A F 1957 Acta Crystallogr. 10 609
|
[1]
|
王亚珍,黄平,龚中良. 热激发效应对界面摩擦的影响[J]. 物理学报, 2012, 61(6): 063203.
|
[2]
|
孙鹏,杜磊,陈文豪,何亮. 基于辐照前1/f噪声的金属-氧化物-半导体场效应晶体管潜在缺陷退化模型[J]. 物理学报, 2012, 61(6): 067801.
|
[3]
|
周静,刘存金,李儒,陈文. 异质界面对Ca(Mg1/3Nb2/3)O3/CaTiO3叠层薄膜结构和介电性能的影响[J]. 物理学报, 2012, 61(6): 067401.
|
[4]
|
张璐,杨家敏. X射线烧蚀泡沫-固体靶增压机理研究[J]. 物理学报, 2012, 61(4): 045203.
|
[5]
|
刘磊. 合金沉淀颗粒劈裂的模拟研究(I):分裂机制[J]. 物理学报, 2012, 61(18): 00.
|
[6]
|
万力,徐法强. FePc与TiO2(110)及C60界面电子结构研究[J]. 物理学报, 2012, 61(18): 00.
|
[7]
|
张睿智,陈文灏,杨璐娜. 纳米陶瓷中限域效应与界面效应对热电性能影响的理论研究[J]. 物理学报, 2012, 61(18): 00.
|
[8]
|
彭虎庆,胡巍,陆大全,马学凯. 热非局域非线性高阶界面孤子的多种孤子解[J]. 物理学报, 2012, 61(18): 00.
|
[9]
|
刘望,汪渊. 氦对铜钨纳米多层膜界面稳定性的影响[J]. 物理学报, 2012, 61(17): 00.
|
[10]
|
王理林,王贤斌,王红艳,林鑫,黄卫东. 晶体取向对定向凝固平界面失稳行为的影响[J]. 物理学报, 2012, 61(14): 0148104.
|
[11]
|
黄秀峰, 潘礼庆, 李晨曦, 王强, 孙刚, 陆坤权. 低温下二氧化硅介孔内水的振动性质[J]. 物理学报, 2012, 61(13): 0136801.
|
[12]
|
张忠强, 丁建宁, 刘珍, Y. Xue, 程广贵, 凌智勇. 碳纳米管-聚乙烯复合材料界面力学特性分析[J]. 物理学报, 2012, 61(12): 126202.
|
[13]
|
孙鹏, 杜磊, 陈文豪, 何亮, 张晓芳. 金属-氧化物-半导体场效应管辐射效应模型研究[J]. 物理学报, 2012, 61(10): 107803.
|
[14]
|
孙芳, 曾周末, 王晓媛, 靳世久, 詹湘琳. 界面条件下线型超声相控阵声场特性研究[J]. 物理学报, 2011, 60(9): 094301.
|
[15]
|
熊飞, 潘红星, 张辉, 杨宇. 溅射沉积自诱导混晶界面与Ge量子点的生长研究[J]. 物理学报, 2011, 60(8): 088102.
|
|
|
|