搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

互补金属氧化物半导体器件空间低剂量率辐射效应预估模型研究

何宝平 姚志斌

引用本文:
Citation:

互补金属氧化物半导体器件空间低剂量率辐射效应预估模型研究

何宝平, 姚志斌

Research on prediction model of radiation effect for complementary metal oxide semiconductor devices at low dose rate irradiation in space environment

He Bao-Ping, Yao Zhi-Bin
PDF
导出引用
  • 给出了一种新的预估互补金属氧化物半导体器件(CMOS器件)空间低剂量率辐射效应模型,相对线性响应预估模型,该模型在预估CMOS器件低剂量率辐射效应方面更接近实际试验结果,且不同剂量率辐射试验结果证实了所建模型的正确性.最后利用新建模型对处于空间低剂量率环境下CMOS器件的敏感参数进行了预估.
    A new model is presented to predict the radiation response for complementary metal oxide semiconductor(CMOS)devices at low dose rate in space environment. In comparison with the linear system response theory model, the prediction results for CMOS devices at low dose rate radiation by using the new model are more close to actually experiment data, and the experimental results for different dose rate of radiation verify the accuracy of the model. Finally, the radiation effects on sensitive parameters of CMOS devices at low dose rate in space environment are predicted by making use of the new model.
    • 基金项目: 国防预研基金(批准号:311060403)资助的课题.
    [1]

    [1]Brown D B, Johnston A H 1987 IEEE Trans. Nucl. Sci. 34 1720

    [2]

    [2]Stapor W J, Meyers J P, Kinnison J D, Carkuff B G 1992 IEEE Trans. Nucl. Sci. 39 1876

    [3]

    [3]Pavan P, Tu R H, Minami ER 1994 IEEE Trans. Nucl. Sci. 41 2619

    [4]

    [4] Zhang T Q, Liu J L, Li J J, Wang J P, Zhang Z X, Xu N J, Zhao Y F, Hu Y H 1999 Acta Phys. Sin. 48 2299 (in Chinese)[张廷庆、刘家璐、李建军、王剑平、张正选、徐娜军、赵元富、胡浴红 1999 物理学报 48 2299]

    [5]

    [5] He B P, Wang G Z, Zhou H, Gong J C, Luo Y H 2003 Acta phys. Sin. 52 188 (in Chinese)[何宝平、王桂珍、周辉、龚建成、罗尹虹 2003 物理学报 52 188]

    [6]

    [6]MIL-STD 883D Test method 10194, issued January 1992 by the Defense electronics support center, Dayton, OH.

    [7]

    [7]Carriere T, Beaucour J, Gach A 1994 IEEE Trans. Nucl. Sci. 42 1567

    [8]

    [8]Winokur P S 1982 IEEE Trans. Nucl. Sci. 29 2102

    [9]

    [9]Winokur PS, Kerris K G, Harper L 1983 IEEE Trans. Nucl. Sci. 30 4326

    [10]

    ]Schrimpf R D, Wahle P J 1988 IEEE Trans. Nucl. Sci. 35 1536

    [11]

    ]Shvetzov-Shilovsky I N, Belyakov V V, Cherepko S V 1996 IEEE Trans. Nucl. Sci. 43 3182

    [12]

    ]Zupac D, Galloway K F, Schrimpf R D 1993 J. Appl. Phys. 77 2910

  • [1]

    [1]Brown D B, Johnston A H 1987 IEEE Trans. Nucl. Sci. 34 1720

    [2]

    [2]Stapor W J, Meyers J P, Kinnison J D, Carkuff B G 1992 IEEE Trans. Nucl. Sci. 39 1876

    [3]

    [3]Pavan P, Tu R H, Minami ER 1994 IEEE Trans. Nucl. Sci. 41 2619

    [4]

    [4] Zhang T Q, Liu J L, Li J J, Wang J P, Zhang Z X, Xu N J, Zhao Y F, Hu Y H 1999 Acta Phys. Sin. 48 2299 (in Chinese)[张廷庆、刘家璐、李建军、王剑平、张正选、徐娜军、赵元富、胡浴红 1999 物理学报 48 2299]

    [5]

    [5] He B P, Wang G Z, Zhou H, Gong J C, Luo Y H 2003 Acta phys. Sin. 52 188 (in Chinese)[何宝平、王桂珍、周辉、龚建成、罗尹虹 2003 物理学报 52 188]

    [6]

    [6]MIL-STD 883D Test method 10194, issued January 1992 by the Defense electronics support center, Dayton, OH.

    [7]

    [7]Carriere T, Beaucour J, Gach A 1994 IEEE Trans. Nucl. Sci. 42 1567

    [8]

    [8]Winokur P S 1982 IEEE Trans. Nucl. Sci. 29 2102

    [9]

    [9]Winokur PS, Kerris K G, Harper L 1983 IEEE Trans. Nucl. Sci. 30 4326

    [10]

    ]Schrimpf R D, Wahle P J 1988 IEEE Trans. Nucl. Sci. 35 1536

    [11]

    ]Shvetzov-Shilovsky I N, Belyakov V V, Cherepko S V 1996 IEEE Trans. Nucl. Sci. 43 3182

    [12]

    ]Zupac D, Galloway K F, Schrimpf R D 1993 J. Appl. Phys. 77 2910

计量
  • 文章访问数:  7535
  • PDF下载量:  1054
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-03-06
  • 修回日期:  2009-07-16
  • 刊出日期:  2010-03-15

/

返回文章
返回