搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微纳尺度光纤布拉格光栅折射率传感的理论研究

梁瑞冰 孙琪真 沃江海 刘德明

引用本文:
Citation:

微纳尺度光纤布拉格光栅折射率传感的理论研究

梁瑞冰, 孙琪真, 沃江海, 刘德明

Theoretical investigation on refractive index sensor basedon Bragg grating in micro/nanofiber

Liang Rui-Bing, Sun Qi-Zhen, Wo Jiang-Hai, Liu De-Ming
PDF
导出引用
  • 亚波长直径微纳光纤强倏逝场传输的光学特性,使其对周围介质折射率的变化具有极高的灵敏度.本文提出一种基于微纳尺度光纤布拉格光栅(MNFBG)的折射率传感器,结合微纳光纤倏逝场传输和光纤布拉格光栅(FBG)强波长选择的特性来实现高精度折射率传感,对其制备可行性进行了讨论.论文中对MNFBG折射率传感机理进行了深入的理论分析,并使用OptiGrating软件进行了数值模拟,模拟数据显示MNFBG折射率测量的灵敏度随着光纤半径的减小而增加,其中光纤半径为400 nm的MNFBG灵敏度可达到993 nm/RIU,相比于包层蚀刻的FBG灵敏度增加了170倍,说明MNFBG对发展微型化、高灵敏度折射率传感器具有良好的应用前景.
    Subwavelength and nanometer diameter optical fibers have the optical property of enhanced evanescent fields, which makes them very sensitive to the index change of the ambient medium. In this paper, a novel refractometric sensor based on fiber Bragg grating in micro/nano-fiber (MNFBG) is proposed, integrating the enhanced evanescent fields of micro/nano-fiber (MNF) with wavelength choice feature of FBG, and the fabrication about MNFBG is discussed. Refractive index sensing characteristics is comprehensively investigated in theories, and the simulation of sensing the variation of ambient refractive index is performed by using the software of OptiGrating. Results show the sensitivity of the MNFBG is increasing with the decrease of the radium of the MNF. MNFBG with the radius of 400nm can achieve the sensitivity as high as 993nm/RIU. This value is enhanced by 170 times over that of the FBG with etched cladding, which demonstrates that MNFBG has great potential of application in miniaturized, high-sensitivity refractometric sensors.
    • 基金项目: 国家自然科学基金(批准号:60907037,60937002)和中央高校基本科研业务费(批准号:HUST:Q2009026)资助的课题.
    [1]

    Liang W, Huang Y Y, Xu Y, Lee R K, Yariv A 2005 Applied Physics Letters 86 151122

    [2]

    Chryssis A N, Lee S M, Lee S B, Saini S, Dagenais M 2005 IEEE Photonics Technology Letters 17 1253

    [3]
    [4]
    [5]

    Tong L M, Gattass R R, Ashcom J B, He S L, Lou J Y, Shen M Y, Maxwell I, Mazur E 2003 Nature 426 816

    [6]

    Xu F, Brambilla G, Lu Y Q 2009 Opt. Express 17 20866

    [7]
    [8]

    Fang X, Liao C R, Wang D N 2010 Opt. Letters 35 1007

    [9]
    [10]

    Tong L M, Lou J Y, Mazur E 2004 Opt. Express 12 1025

    [11]
    [12]
    [13]

    Zhang Z J 2009 Theory Foundation of Fiber Grating and Sensing Technology (Beijing:Science Press) p49 (in Chinese) [张自嘉 2009 光纤光栅理论基础与传感技术(北京:科技出版社)第49页]

    [14]
    [15]

    Zhang Y, Lin B, Tjin S C, Zhang H, Wang G H, Shum P, Zhang X L 2010 Opt. Express 18 26345

  • [1]

    Liang W, Huang Y Y, Xu Y, Lee R K, Yariv A 2005 Applied Physics Letters 86 151122

    [2]

    Chryssis A N, Lee S M, Lee S B, Saini S, Dagenais M 2005 IEEE Photonics Technology Letters 17 1253

    [3]
    [4]
    [5]

    Tong L M, Gattass R R, Ashcom J B, He S L, Lou J Y, Shen M Y, Maxwell I, Mazur E 2003 Nature 426 816

    [6]

    Xu F, Brambilla G, Lu Y Q 2009 Opt. Express 17 20866

    [7]
    [8]

    Fang X, Liao C R, Wang D N 2010 Opt. Letters 35 1007

    [9]
    [10]

    Tong L M, Lou J Y, Mazur E 2004 Opt. Express 12 1025

    [11]
    [12]
    [13]

    Zhang Z J 2009 Theory Foundation of Fiber Grating and Sensing Technology (Beijing:Science Press) p49 (in Chinese) [张自嘉 2009 光纤光栅理论基础与传感技术(北京:科技出版社)第49页]

    [14]
    [15]

    Zhang Y, Lin B, Tjin S C, Zhang H, Wang G H, Shum P, Zhang X L 2010 Opt. Express 18 26345

计量
  • 文章访问数:  8919
  • PDF下载量:  1100
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-10-08
  • 修回日期:  2011-03-29
  • 刊出日期:  2011-05-05

/

返回文章
返回