|
|
分子XH(X=O, S, Se和 Te)中的正电子能级与正电子原子 |
朱正和1, 付依备2 |
(1)四川大学原子与分子物理研究所,成都 610065; (2)中国工程物理研究院,绵阳 621900 |
The energy levels of positron under molecules XH(X=O, S, Se and Te)and positronium |
Fu Yi-Bei1, Zhu Zheng-He2 |
(1)China Academy of Engineering Physics, Mianyang 621900, China; (2)Institute of Atomic and Molecular Physic, Sichuan University, Chengdu 610065, China |
|
摘要: 基于全对称群的Dirac方程, 研究当存在核场时的正电子能级及其与核场的关系, 即计算在分子OH, SH, SeH和 TeH的核场下的正电子能级. 这时正电子的能量约为 e+=-1.022 MeV. 对于低能级, 当核场强增大时, 其能量有所升高, 而对较高能级, 核场强增大时, 其能量无明显变化. 正负电子的湮没过程为三光子湮没过程(the three-photon annihilation). 而当生成e+- e-<
关键词:
Dirac方程
三光子湮没过程
正态的正电子原子
电荷宇称守衡
|
|
Abstract: The present work devotes to the energy levels of positron under molecules XH(X=O, S, Se and Te)and the relations with nuclear field using Dirac equation based on the full symmetry group. Under these nuclear fields, the energy of positron is about e+=-1.022 MeV. For the lower energy level, the energy of positron is increased with nuclear field; for the higher energy level, the energy of positron is nearly invariant with nuclear field. In this case, it is the three-photon annihilation. The formation of the positronium is in orthopositronium 3S, excited state, followed the conservation of charge parity.
Keywords:
Dirac equation
three-photon annihilation
orthopositronium
conservation of charge parity
|
收稿日期: 2010-07-21
出版日期: 2011-04-15
|
|
引用本文: |
朱正和,付依备. 分子XH(X=O, S, Se和 Te)中的正电子能级与正电子原子. 物理学报, 2011, 60(4): 040302.
|
Cite this article: |
Zhu Zheng-He,Fu Yi-Bei. The energy levels of positron under molecules XH(X=O, S, Se and Te)and positronium. Acta Phys. Sin., 2011, 60(4): 040302.
|
|
|
|
URL: |
http://wulixb.iphy.ac.cn/CN/Y2011/V60/I4/040302 |
[1] | Landu L D, Lifshitz FM 1997 Quantum Mechanics, Butterworth
|
[2] | Luding W, Falter C 1996 Symmetries in Physics (Berlin:Springer-Verlag Heidelberg)
|
[3] | Tinkham M 1964 Group Theory and Quantum Mechanics. (New York; McGraw-Hill)
|
[4] | Berengut J C, Flambaum V V, Kozlov M G 2006 Physcal Review A 73 012504
|
[5] | Animalu A O E 1977 Intermediate Quantum Theory of Crystalline Solids, Prentice-Hall, INC.
|
[6] | Seeger A 1972 Physics Lett. A 40 135
|
[7] | Luiz Guilherme M de Macedo, Julio R Sambrano, Aguinaldo R de Souza, Antonio Carlos Borin 2007 Chem. Phys. Lett. 440 376
|
[8] | Bieron J, Fischer C F, Indelicato P, Jonsson P, pyykko P 2009 Phys. Rev. A 79 052502
|
[9] | Saue T, Helgaker T 2002 J. Comput. Chem. 23 814
|
[10] | Zhu Z H 2007 Atomic and Molecular Reaction Statics (Beijing: Science Press) (in Chinese) [朱正和 2007 原子分子反应静力学(北京:科学出版社)]
|
[11] | Cornwell J F 1994 Group Theory in Physics (London: Academic Press)
|
[12] | Saue T, Jensen H J Aa 1999 J. Chem. Phys. 111 6211
|
[13] | Saue T, Jensen H J Aa 2003 J. Chem. Phys. 118 5
|
[14] | Fleig T, Visscher L 2005 Chemical Physics 311 113
|
[15] | Charlie H 1976 Introduction to Mathematical Physics (Prentice_Hall, INC.Engleewood Cliffs, New Jersey)
|
[16] | Jensen H J A, Saue T, Visscher L, DIRAC08
|
[17] | Saue T, Helgaker T 2002 J. Comput. Chem. 23 814
|
[18] | Akinori Igarashi, Mineo Kimura, Isao Shimamura 2002 Phys. Rev. Lett. 12 123201
|
[19] | Ryzhikh G G, Mitroy J 2000 J. Phys. B 33 2229
|
[20] | Ivanov I A, Mitroy J 2000 J. Phys. B 33 L831
|
[21] | West R N 1974 Positron Studies of Condensed Matter Taylor and Francis Lid.
|
[22] | Jean Y C, Mallon P E, Schrader D M 2003 Principles and Applications of Positron and Positronium Chemistry, World Scientific
|
[23] | Johson C S, Pedersen L G 1986 Problems and Solutions in Quantum Chemistry and Physics, Dover Publication, Inc., New York
|
[24] | Dicke R H, Wittke J P 1980 Introducation to Quantum Mechanics, Addison-Wesley Publishing Company, INC.
|
[25] | Berestetskii V B, Lifshitz, E M, Pitaevskii LP 1994 RelativisticQuantumTheory, oxford:Pergamon,
|
[26] | Al-Ramadhan A H, Gidley D W 1994 Phys. Rev. Lett. 72 1632
|
[27] | Chen X L, Zhang J, Du H J, Zhou X Y, Ye B J 2010 Acta Phys. Sin. 59 0603 (in Chinese) [陈祥磊、张 杰、杜淮江、周先意、叶邦角 2010 物理学报 59 0603]
|
[28] | Zhang H J, Wang D, Chen Z Q, Wang S J, Xu Y M, Luo X H 2010 Acta Phys. Sin. 59 7333 (in Chinese) [张宏俊、王 栋、陈志权、王少阶、徐友明、罗锡辉 2010 物理学报 59 7333]
|
[29] | Zhou K, Li H, Wang Z 2010 Acta Phys. Sin. 59 (in Chinese) [周 凯、李 辉、王 柱 2010 物理学报 59 5116]
|
[1]
|
丁光涛. 磁场中带电粒子阻尼运动的分析力学表示[J]. 物理学报, 2012, 61(2): 020204.
|
[2]
|
朱正和, 蒙大桥. 锕系元素钍到锿的5f电子效应[J]. 物理学报, 2011, 60(4): 040301.
|
[3]
|
林恺, 杨树政. 高维de Sitter时空中宇宙视界处的Fermi子隧穿[J]. 物理学报, 2010, 59(4): 2223-2227.
|
[4]
|
胥建卫, 王顺金. 电子的相对论平均场理论与一阶、二阶Rashba效应[J]. 物理学报, 2009, 58(7): 4878-4882.
|
[5]
|
林恺, 杨树政. Vaidya-Bonner黑洞的费米子隧穿[J]. 物理学报, 2009, 58(2): 744-748.
|
[6]
|
张民仓. 类Quesne环状球谐振子势场中的赝自旋对称性[J]. 物理学报, 2009, 58(2): 712-716.
|
[7]
|
张民仓. 相对论性非球谐振子势场中的赝自旋对称性[J]. 物理学报, 2009, 58(1): 61-65.
|
[8]
|
杨 波. 直线加速Kinnersley黑洞中Dirac粒子的热辐射[J]. 物理学报, 2008, 57(2): 1278-1284.
|
[9]
|
梁麦林, 张福林, 袁 兵. 无穷深势阱中相对论粒子的矩阵元及其经典近似[J]. 物理学报, 2007, 56(7): 3683-3687.
|
[10]
|
张民仓, 王振邦. 一类环状非球谐振子势场中相对论粒子的束缚态解[J]. 物理学报, 2007, 56(7): 3688-3692.
|
[11]
|
曹江陵. 任意加速带电动态黑洞中Dirac粒子的Hawking辐射[J]. 物理学报, 2006, 55(6): 2682-2686.
|
[12]
|
张民仓, 王振邦. Manning-Rosen标量势与矢量势的Klein-Gordon方程和Dirac方程的束缚态[J]. 物理学报, 2006, 55(2): 521-524.
|
[13]
|
张民仓, 王振邦. 第二类P?schl-Teller势场中相对论粒子的束缚态[J]. 物理学报, 2006, 55(2): 525-528.
|
[14]
|
张民仓, 王振邦. Makarov势的Dirac方程的束缚态解[J]. 物理学报, 2006, 55(12): 6229-6233.
|
[15]
|
李 宁, 鞠国兴, 任中洲. 一类相对论性非球谐振子系统的束缚态[J]. 物理学报, 2005, 54(6): 2520-2523.
|
|
|
|