|
|
基于点缺陷扩散理论与离散位错动力学耦合的位错攀移模型研究 |
高原, 柳占立, 赵雪川, 张朝晖, 庄茁, 由小川 |
清华大学航天航空学院,教育部应用力学实验室,北京 100084 |
Dislocation climb model based on coupling the diffusion theory ofpoint defects with discrete dislocation dynamics |
Gao Yuan, Liu Zhan-Li, Zhao Xue-Chuan, Zhang Zhao-Hui, Zhuang Zhuo, You Xiao-Chuan |
Applied Mechanics Laboratory, School of Aerospace, Tsinghua University, Beijing 100084, China |
|
摘要: 位错的攀移运动对高温下晶体材料的塑性行为有重要影响,为了能够有效揭示攀移的物理本质及其对塑性行为的作用,本文基于点缺陷扩散理论,通过将体扩散和管扩散机理的共同作用与三维离散位错动力学耦合,建立了适用条件更广的位错攀移模型. 利用此模型我们模拟了单个及多个棱柱型位错环的收缩变形过程,发现影响位错攀移速率的决定因素不是传统理论认为的机械攀移力,而是位错周围(体扩散)及位错段上(管扩散)的空位浓度梯度. 该模型也能够完全重现棱柱型位错环群的粗化过程中不同位错环半径及晶体内平均空位浓度随时间变化的三个阶段.
关键词:
位错攀移
点缺陷扩散理论
位错动力学
棱柱位错环
|
|
Abstract: Dislocation climb plays a vital role in the plastic behavior of crystals at high temperatures. In order to reveal the intrinsic mechanism of climb and its effect on plasticity, a new dislocation climb model is first developed based on the combination of the diffusion theory with both bulk diffusion and pipe diffusion in a three-dimensional discrete dislocation dynamics (DDD) simulation, which is considered to be more physical and widely applicable. Using our model the shrinkage processes of a single prismatic loop group and prismatic loop group are simulated. It is concluded that the climb rate is not directly determined by mechanical climb force as believed in classical theories, but by the gradient of the vacancy concentration around (bulk diffusion) and along (pipe diffusion) the dislocation line. Loop coarsening process is also simulated, and the three pronounced evolving stages of the loop radii and the average vacancy concentrations in crystal are reproduced.
Keywords:
dislocation climb
diffusion theory of point defects
dislocation dynamics
prismatic dislocation loop
|
收稿日期: 2010-01-25
出版日期: 2011-09-15
|
|
基金: 国家自然科学基金(批准号:10772096)资助的课题. |
引用本文: |
高原,柳占立,赵雪川 等 . 基于点缺陷扩散理论与离散位错动力学耦合的位错攀移模型研究. 物理学报, 2011, 60(9): 096103.
|
Cite this article: |
Gao Yuan,Liu Zhan-Li,Zhao Xue-Chuan et al. Dislocation climb model based on coupling the diffusion theory ofpoint defects with discrete dislocation dynamics. Acta Phys. Sin., 2011, 60(9): 096103.
|
|
|
|
URL: |
http://wulixb.iphy.ac.cn/CN/Y2011/V60/I9/096103 |
[1] | Hirth J P, Lothe J 1982 Theory of Dislocations (New York: Wiley Interscience)
|
[2] | Li Y, Kong Q P 1989 Acta Phys. Sin. 38 91 (in Chinese) [李勇、孔庆平 1989 物理学报 38 91]
|
[3] | Allnatt A, Lidiard A 1993 Atomic transport in solids (Cambridge: Cambridge University Press)
|
[4] | Caillard D, Martin J 2003 Thermally activated mechanisms in crystal plasticity (Amsterdam: Pergamon Press)
|
[5] | Fedelich B 2002 Int. J. Plast. 18 1
|
[6] | Hiratani M, Zbib H 2002 J. Eng. Mater. Technol. 124 335
|
[7] | Li H, Lin J, Dean T A, Wen S W, Bannister A C 2009 Int. J. Plast. 25 1049
|
[8] | Mordehai D, Clouet E, Fivel M, Verdier M 2008 Philos. Mag. 88 899
|
[9] | Amodeo R, Ghoniem N 1990 Phys. Rev. B 41 6958
|
[10] | Roters F, Raabe D, Gottstein G 1996 Comput. Mater. Sci. 7 56
|
[11] | Argaman N, Levy O, Makov G 2001 Mater. Sci. Eng. A 309 386
|
[12] | Bakó B, Groma I, Györgyi G, Zimányi G 2006 Comput. Mater. Sci. 38 22
|
[13] | Ghoniem N, Tong S, Sun L 2000 Phys. Rev. B 61 913
|
[14] | Cleveringa H H M, Van der Giessen E, Needleman A 1999 Int. J. Plast. 15 837
|
[15] | Tang X, Lagerl f K, Heuer A 2003 J. Am. Ceram. Soc. 86 560
|
[16] | Legros M, Dehm G, Arzt E, Balk T 2008 Science 319 1646
|
[17] | Ge T S 1996 Acta Phys. Sin. 45 1016 (in Chinese) [葛庭燧 1996 物理学报 45 1016]
|
[18] | Edelin G 1971 Philos. Mag. 23 1547
|
[19] | Liu Z L, Liu X M, Zhuang Z, You X C 2009 Scripta Mater. 60 594
|
[20] | Liu Z L, Liu X M, Zhuang Z, You X C 2009 Int. J. Plast. 25 1436
|
[21] | Lu G, Fang B Q, Zhang G C, Xu A G 2009 Acta Phys. Sin. 58 7934 (in Chinese) [卢 果、方步青、张广财、许爱国 2009 物理学报 58 7934]
|
[22] | Silcox J, Whelan M 1960 Philos. Mag. 5 1
|
[23] | Sun H, Pan X, Haeni J, Schlom D 2004 Appl. Phys. Lett. 85 1967
|
[24] | Burton B, Speight M 1986 Philos. Mag. A 53 385
|
|
|
|