搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非平衡磁控溅射制备类石墨碳膜及性能研究

王永军 李红轩 吉利 刘晓红 吴艳霞 周惠娣 陈建敏

引用本文:
Citation:

非平衡磁控溅射制备类石墨碳膜及性能研究

王永军, 李红轩, 吉利, 刘晓红, 吴艳霞, 周惠娣, 陈建敏

Preparation and properties of graphite-like carbon films fabricated by unbalanced magnetron sputtering

Wang Yong-Jun, Li Hong-Xuan, Ji Li, Liu Xiao-Hong, Wu Yan-Xia, Zhou Hui-Di, Chen Jian-Min
PDF
导出引用
  • 利用中频非平衡磁控溅射技术在单晶硅基底上沉积了类石墨碳膜, 采用Raman光谱、高分辨透射电子显微镜、原子力显微镜分析了薄膜微观结构和表面形貌; 采用纳米压痕仪和CSM摩擦磨损试验机测试了碳膜力学性能和摩擦学性能. 结果表明: 利用中频非平衡磁控溅射技术沉积的碳膜是一种以sp2键合碳为主、结构非晶、硬度适中、应力较低、表面粗糙度较大、摩擦性能优异的薄膜. 脉冲占空比对薄膜微观结构和性能有显著影响, 随着脉冲占空比的增大, Raman光谱D峰和G峰的强度比ID/IG先减小后增大, 而硬度随脉冲占空比的增大却呈现出相反的变化趋势, 即先增大后减小; 大气氛围中的摩擦性能测试表明, 本实验制备的薄膜具有优异的抗磨性能(~10-11 cm3/N-1. m-1)和承载能力(~2.5 GPa). 随脉冲占空比的增大, 薄膜摩擦系数变化甚微而磨损率却呈现先显著减小后轻微增大的变化趋势. 类石墨碳膜优异的摩擦学性能主要归因于其独特的结构、较低的内应力及良好的结构稳定性.
    A series of graphite-like carbon films is fabricated by the middle frequency magnetron sputtering technique. The microstructures and the morphologies of the resulting films are investigated by Raman spectroscopy, high resolution transmission electron microscopy and atomic force microscopy, respectively. The mechanical and the tribological properties of the films are studied by nanoindentation and CSM tribometer. The results show that the deposited carbon film is dominated by sp2 sites, and has an amorphous structure, a moderate hardness, low internal stress, high surface roughness and superior tribological properties. With the increase of the duty ratio, the intensity ratio between D and G peaks first decreases and then increases, while the film hardness first increases and then decreases. Tribological testing in humid atmosphere demonstrates that the present carbon film has a superior wear resistance (~10-11 cm3/N-1.m-1) and high load bearing capacity (~2.5 GPa). Although the duty ratio has no obvious influence on friction coefficient, the wear rate decreases obviously and then increases slightly with the increase of duty ratio. The superior tribological properties of the graphite-like carbon film are attributed mainly to its unique structure, low internal stress and high structure stability.
    • 基金项目: 国家自然科学基金(批准号: 50705093, 50575217)、国家自然科学基金创新群体基金(批准号: 50421502)和国家重点基础研究发展计划(批准号: 2007 CB607601)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 50705093, 50575217), the Innovative Group Foundation from NSFC (Grant No. 50421502) and the National Basic Research Program of China (Grant No. 2007CB607601).
    [1]

    Robertson J 2002 Mater. Sci. Eng. R 37 129

    [2]
    [3]

    Neuville S, Matthews A 2007 Thin Solid Films 515 6619

    [4]
    [5]

    Ma G J, Liu X L, Zhang H F, Wu H C, Peng L P, Jiang Y L 2007Acta Phys. Sin. 56 2377 (in Chinese ) [马国佳,刘喜亮, 张华芳, 武洪臣, 彭丽平, 蒋艳莉 2007 物理学报 56 2377]

    [6]

    Zhao D C, Ren N, Ma Z J, Qiu J W, Xiao G J, Wu S H 2007 ActaPhys. Sin. 57 1935 (in Chinese) [赵栋才,任妮, 马占吉, 邱家稳, 肖更竭, 武生虎 2007 物理学报 57 1935]

    [7]
    [8]
    [9]

    Chouquet C, Gavillet J, Ducros C, Sanchette F 2010 Mater. Chem.Phys. 12 3367

    [10]

    Ma G J, Liu X L, Zhang H F, Wu H C, Peng L P 2007 Chin. Phys.B 17 1105

    [11]
    [12]
    [13]

    Chen X C, Peng Z J, Fu Z Q, Wang C B 2010 China Surf. Eng. 2336 (in Chinese) [陈新春,彭志坚, 付志强, 王成彪 2010 中国表面工程 23 36]

    [14]
    [15]

    Dai M J, Fu Z Q, Lin S S,Wang C B, Xiao X L 2010 Vacuum 47 1(in Chinese) [代明江, 付志强, 林松盛,王成彪, 肖晓玲 2010 真空 47 1]

    [16]
    [17]

    Ding Q, Wang L P, Hu L T, Hu T C, Wang Y F, Zhang Y N 2011J. Appl. Phys. 109 013501

    [18]
    [19]

    Yang S, Jones A H S, Teer D 2000 Surf. Coat. Technol. 133-134369

    [20]
    [21]

    Konca E, Cheng Y T, Weiner A M, Dasch J M, Alpas A T 2006Surf. Coat. Technol. 200 3996

    [22]

    Yan S P, Jiang B L, Su Y, Zhang Y H 2008 Tribology 28 491 (inChinese) [严少平, 蒋百灵,苏阳, 张永宏 2008 摩擦学报 28 491]

    [23]
    [24]

    Ma J, Jiang B L, Zhang Y H 2007 Tribology 27 437 (in Chinese)[马婕, 蒋百灵, 张永宏 2007 摩擦学报 27 437]

    [25]
    [26]

    Fu Y H, Zhu X D, He J W, Yang S C 2003 Tribology 23 463 (inChinese) [付永辉, 朱晓东, 何家文, Yang S C 2003textitTribology 23 463]

    [27]
    [28]

    Ferrari A C, Robertson J 2001 Phys. Rev. B 64 075414 [16] Ferrari A C, Robertson J 2000 Phys. Rev. B 61 14095

    [29]
    [30]
    [31]

    Baptista D L, Zawislak F C 2004 Diamond Relat. Mater. 13 1791

    [32]
    [33]
    [34]

    Siegal M P, Tallant D R, Martinez-Miranda L J, Barbour J C,Simpson R L, Overmyer D L 2000 Phys. Rev. B 61 10451

    [35]
    [36]

    Liu A P, Zhu J Q, Han J C, Wu H P, Jia Z C 2007 Appl. Surf. Sci.253 9124

    [37]
    [38]

    Peng X L, Barber Z H, Clyne T W 2001 Surf. Coat. Technol. 13823

    [39]
    [40]

    Lifshitz Y, Edrei R, Hoffman A, Grossman E, Lempert G D,Berthold J, Schultrich B, Jger H U 2007 Diamond Relat. Mater.16 1771

    [41]
    [42]

    Kim T Y, Lee C S, Lee Y J, Lee K R, Chae K H, Oh K H 2007 J.Appl. Phys. 101 023504

    [43]

    Voevodin A A, Donley M S, Zabinski J S, Bultman J E 1995 Surf.Coat. Technol. 76-77 534

  • [1]

    Robertson J 2002 Mater. Sci. Eng. R 37 129

    [2]
    [3]

    Neuville S, Matthews A 2007 Thin Solid Films 515 6619

    [4]
    [5]

    Ma G J, Liu X L, Zhang H F, Wu H C, Peng L P, Jiang Y L 2007Acta Phys. Sin. 56 2377 (in Chinese ) [马国佳,刘喜亮, 张华芳, 武洪臣, 彭丽平, 蒋艳莉 2007 物理学报 56 2377]

    [6]

    Zhao D C, Ren N, Ma Z J, Qiu J W, Xiao G J, Wu S H 2007 ActaPhys. Sin. 57 1935 (in Chinese) [赵栋才,任妮, 马占吉, 邱家稳, 肖更竭, 武生虎 2007 物理学报 57 1935]

    [7]
    [8]
    [9]

    Chouquet C, Gavillet J, Ducros C, Sanchette F 2010 Mater. Chem.Phys. 12 3367

    [10]

    Ma G J, Liu X L, Zhang H F, Wu H C, Peng L P 2007 Chin. Phys.B 17 1105

    [11]
    [12]
    [13]

    Chen X C, Peng Z J, Fu Z Q, Wang C B 2010 China Surf. Eng. 2336 (in Chinese) [陈新春,彭志坚, 付志强, 王成彪 2010 中国表面工程 23 36]

    [14]
    [15]

    Dai M J, Fu Z Q, Lin S S,Wang C B, Xiao X L 2010 Vacuum 47 1(in Chinese) [代明江, 付志强, 林松盛,王成彪, 肖晓玲 2010 真空 47 1]

    [16]
    [17]

    Ding Q, Wang L P, Hu L T, Hu T C, Wang Y F, Zhang Y N 2011J. Appl. Phys. 109 013501

    [18]
    [19]

    Yang S, Jones A H S, Teer D 2000 Surf. Coat. Technol. 133-134369

    [20]
    [21]

    Konca E, Cheng Y T, Weiner A M, Dasch J M, Alpas A T 2006Surf. Coat. Technol. 200 3996

    [22]

    Yan S P, Jiang B L, Su Y, Zhang Y H 2008 Tribology 28 491 (inChinese) [严少平, 蒋百灵,苏阳, 张永宏 2008 摩擦学报 28 491]

    [23]
    [24]

    Ma J, Jiang B L, Zhang Y H 2007 Tribology 27 437 (in Chinese)[马婕, 蒋百灵, 张永宏 2007 摩擦学报 27 437]

    [25]
    [26]

    Fu Y H, Zhu X D, He J W, Yang S C 2003 Tribology 23 463 (inChinese) [付永辉, 朱晓东, 何家文, Yang S C 2003textitTribology 23 463]

    [27]
    [28]

    Ferrari A C, Robertson J 2001 Phys. Rev. B 64 075414 [16] Ferrari A C, Robertson J 2000 Phys. Rev. B 61 14095

    [29]
    [30]
    [31]

    Baptista D L, Zawislak F C 2004 Diamond Relat. Mater. 13 1791

    [32]
    [33]
    [34]

    Siegal M P, Tallant D R, Martinez-Miranda L J, Barbour J C,Simpson R L, Overmyer D L 2000 Phys. Rev. B 61 10451

    [35]
    [36]

    Liu A P, Zhu J Q, Han J C, Wu H P, Jia Z C 2007 Appl. Surf. Sci.253 9124

    [37]
    [38]

    Peng X L, Barber Z H, Clyne T W 2001 Surf. Coat. Technol. 13823

    [39]
    [40]

    Lifshitz Y, Edrei R, Hoffman A, Grossman E, Lempert G D,Berthold J, Schultrich B, Jger H U 2007 Diamond Relat. Mater.16 1771

    [41]
    [42]

    Kim T Y, Lee C S, Lee Y J, Lee K R, Chae K H, Oh K H 2007 J.Appl. Phys. 101 023504

    [43]

    Voevodin A A, Donley M S, Zabinski J S, Bultman J E 1995 Surf.Coat. Technol. 76-77 534

  • [1] 丁智松, 高巍, 魏敬鹏, 金耀华, 赵晨, 杨巍. TaC微粒对Ti-6Al-4V合金微弧氧化层结构和性能的影响. 物理学报, 2022, 71(2): 028102. doi: 10.7498/aps.71.20210835
    [2] 丁智松, 高巍, 魏敬鹏, 金耀华, 赵晨, 杨巍. TaC 微粒对 Ti-6Al-4V 合金微弧氧化层结构和性能的影响. 物理学报, 2021, (): . doi: 10.7498/aps.70.20210835
    [3] 张娜, 刘波, 林黎蔚. He离子辐照对石墨烯微观结构及电学性能的影响. 物理学报, 2020, 69(1): 016101. doi: 10.7498/aps.69.20191344
    [4] 佟国香, 李毅, 王锋, 黄毅泽, 方宝英, 王晓华, 朱慧群, 梁倩, 严梦, 覃源, 丁杰, 陈少娟, 陈建坤, 郑鸿柱, 袁文瑞. 磁控溅射制备W掺杂VO2/FTO复合薄膜及其性能分析. 物理学报, 2013, 62(20): 208102. doi: 10.7498/aps.62.208102
    [5] 张传军, 邬云骅, 曹鸿, 高艳卿, 赵守仁, 王善力, 褚君浩. 不同衬底和CdCl2退火对磁控溅射CdS薄膜性能的影响. 物理学报, 2013, 62(15): 158107. doi: 10.7498/aps.62.158107
    [6] 杨铎, 钟宁, 尚海龙, 孙士阳, 李戈扬. 磁控溅射(Ti, N)/Al纳米复合薄膜的微结构和力学性能. 物理学报, 2013, 62(3): 036801. doi: 10.7498/aps.62.036801
    [7] 张强, 朱小红, 徐云辉, 肖云军, 高浩濒, 梁大云, 朱基亮, 朱建国, 肖定全. Mn4+掺杂对BiFeO3陶瓷微观结构和电学性能的影响研究. 物理学报, 2012, 61(14): 142301. doi: 10.7498/aps.61.142301
    [8] 唐杰, 杨梨容, 王晓军, 张林, 魏成富, 陈擘威, 梅杨. 高压对大块(PrNd)xAl0.6Nb0.5Cu0.15B1.05Fe97.7-x合金微观结构和性能的影响. 物理学报, 2012, 61(24): 240701. doi: 10.7498/aps.61.240701
    [9] 丁万昱, 王华林, 巨东英, 柴卫平. O2流量对磁控溅射N掺杂TiO2薄膜成分及晶体结构的影响. 物理学报, 2011, 60(2): 028105. doi: 10.7498/aps.60.028105
    [10] 李林娜, 陈新亮, 王斐, 孙建, 张德坤, 耿新华, 赵颖. H2 气对脉冲磁控溅射铝掺杂氧化锌薄膜性能的影响. 物理学报, 2011, 60(6): 067304. doi: 10.7498/aps.60.067304
    [11] 罗庆洪, 陆永浩, 娄艳芝. Ti-B-C-N纳米复合薄膜结构及力学性能研究. 物理学报, 2011, 60(8): 086802. doi: 10.7498/aps.60.086802
    [12] 王德义, 高书霞, 李刚, 赵鸣. 溶胶-凝胶法制备Li-N双掺p型ZnO薄膜的结构、光学和电学性能. 物理学报, 2010, 59(5): 3473-3480. doi: 10.7498/aps.59.3473
    [13] 丁万昱, 徐军, 陆文琪, 邓新绿, 董闯. 微波ECR磁控溅射制备SiNx薄膜的XPS结构研究. 物理学报, 2009, 58(6): 4109-4116. doi: 10.7498/aps.58.4109
    [14] 丁万昱, 王华林, 苗壮, 张俊计, 柴卫平. 沉积参数对SiNx薄膜结构及阻透性能的影响. 物理学报, 2009, 58(1): 432-437. doi: 10.7498/aps.58.432
    [15] 刘 峰, 孟月东, 任兆杏, 舒兴胜. 感应耦合等离子体增强射频磁控溅射沉积ZrN薄膜及其性能研究. 物理学报, 2008, 57(3): 1796-1801. doi: 10.7498/aps.57.1796
    [16] 丁万昱, 徐 军, 陆文琪, 邓新绿, 董 闯. 基片温度对SiNx薄膜结晶状态及机械性能的影响. 物理学报, 2008, 57(8): 5170-5175. doi: 10.7498/aps.57.5170
    [17] 胡 冰, 李晓娜, 董 闯, 姜 辛. 磁控溅射法合成纳米β-FeSi2/a-Si多层结构. 物理学报, 2007, 56(12): 7188-7194. doi: 10.7498/aps.56.7188
    [18] 孙成伟, 刘志文, 秦福文, 张庆瑜, 刘 琨, 吴世法. 生长温度对磁控溅射ZnO薄膜的结晶特性和光学性能的影响. 物理学报, 2006, 55(3): 1390-1397. doi: 10.7498/aps.55.1390
    [19] 丁万昱, 徐 军, 李艳琴, 朴 勇, 高 鹏, 邓新绿, 董 闯. 微波ECR等离子体增强磁控溅射制备SiNx薄膜及其性能分析. 物理学报, 2006, 55(3): 1363-1368. doi: 10.7498/aps.55.1363
    [20] 彭鸿雁, 周传胜, 赵立新, 金曾孙, 张 冰, 陈宝玲, 陈玉强, 李敏君. 激光功率密度对类金刚石膜结构性能的影响. 物理学报, 2005, 54(9): 4294-4299. doi: 10.7498/aps.54.4294
计量
  • 文章访问数:  7437
  • PDF下载量:  729
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-02-11
  • 修回日期:  2011-06-23
  • 刊出日期:  2012-03-05

/

返回文章
返回