搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

退火重结晶制备AlN/C复合泡沫材料及其力学性能研究

程赛 吕惠民 崔静雅

引用本文:
Citation:

退火重结晶制备AlN/C复合泡沫材料及其力学性能研究

程赛, 吕惠民, 崔静雅

Preparation of AlN/C composite foam through annealing recrystallization and its mechanical performance study

Cheng Sai, Lü Hui-Min, Cui Jing-Ya
PDF
导出引用
  • 为了得到一种轻质、高强度、耐烧灼的新型碳泡沫材料,以无定形AlN为添加剂,在空心微球/网络复合型碳泡沫的基础上,采用退火热处理工艺成功地制备出了AlN/C复合泡沫材料.通过扫描电镜、透射电镜对样品进行表征,测试结果表明无定形AlN在碳微球的表面重结晶为AlN晶须,其直径大约为50nm左右,长度10m以上,具有较大的长径比.X-射线衍射峰证明样品石墨化程度高,且AlN晶须为六方结构.X-射线光电子能谱测试发现在287.5eV处有较明显的CN峰出现,这表明AlN和碳泡沫在界面处通过CN键结合.同时,对其力学性能进行测试,通过分析应力-应变测试结果,AlN/C复合泡沫材料的压缩强度为40.27MPa,相对碳泡沫材料而言提高了近一个数量级.测试结果表明,AlN晶须显著增强了碳泡沫的压缩强度,这种新型复合泡沫材料有望应用于各种抗压减震航空材料.
    Order to get a new type carbon foam material, AlN/C composite foam was successfully synthesized by using AlN as an additive and hollow microspheres/reticulated carbon foam as a basement thought the annealing high-temperature heated process. The prepared samples were characterized by Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM). The results of test indicated that AlN whiskers with diameter of 50nm, length large than 10 um and larger length-diameter ratio were prepared by amorphous AlN recrystallization at the surface of carbon microspheres. Diffraction peaks of XRD demonstrated that the sample was characterized as graphitization and AlN whiskers were hexagonal structure. XPS test showed that there was an obvious peak of CN bond on 287.5 eV, which revealed that AlN and carbon foam through CN bond combined on their interfaces. Meanwhile, it was showed that AlN/C foam material's compression strength was 40.27 MPa through the analysis of the stress-strain of mechanical performance, which increased nearly one order of magnitude compared with the carbon foam material. The results of test showed that compressive strength of carbon foam was obvious reinforced by AlN whisker. And this new composite foam has infinite applications value in various kinds of resist compression and absorbing aeronautical materials.
    • 基金项目: 国家自然科学基金(批准号: 11074200)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No.11074200).
    [1]

    Shi Z H, Li K Z, Li H J, Wang C, Li Z Q 2005 J. Funct. Mater. 361944 (in Chinese) [石振海, 李克智, 李贺军, 王闯, 李照谦 2005 功能材料 36 1944]

    [2]

    Lü H M, Shi Z H, Zhao C, Wei P 2010 Acta Phys. Sin. 59 7956 (in Chinese) [吕惠民, 石振海, 赵超, 魏萍 2010 物理学报 59 7956]

    [3]

    Klett J, Hardy R, Romine E, Walls C, Burchell T 2000 Carbon 38953

    [4]

    Bruneten E, Tallaron C, Gras-Naulin N 2002 Carbon 40 1919

    [5]

    Li W Q, Zhang H B, Xiong X A 2011 J. Mater. Sci. 46 1143

    [6]

    Gan L H, Liu M X, Wang X, Tian C 2008 J. Tongji Univ. (NaturalScience) 36 1552(in Chinese) [甘礼华, 刘明贤, 王曦, 田辞 2008 同济大学学报 (自然科学版) textbf{36 1552]

    [7]

    Xiao N, Ling Z, Wang L P, Zhou Y, Qiu J S 2011 Carbon 49 1052

    [8]

    Luo R Y, Ni Y F, Li J S, Yang C L, Wang S B 2011 Mater. Sci.Eng. A 528 2023

    [9]

    Li W Q, Zhang H B, Xiong X, Feng X 2010 Mater. Sci. Eng. A527 2993

    [10]

    Lü H M, Chen G D, Yan G J, Ye H G 2007 Acta Phys. Sin. 562808 (in Chinese) [吕惠民, 陈光德, 颜国君, 耶红刚 2007 物理学报 56 2808]

    [11]

    Lü H M, Shi Z H, Chen G D 2009 Acta Phys. Sin. 58 6403 (in Chinese) [吕惠民, 石振海, 陈光德 2009 物理学报 58 6403]

    [12]

    Kohn J A, Cotter P G, Potter R A 1956 Am. Mineral. 41 355

    [13]

    Wang Y D, Zhou H P, Qiao L, Jin H B, Fu R L 2001 Acta Metal.Sin. 37 109 (in Chinese) [汪雨荻, 周和平, 乔梁, 金海波, 傅仁利 2001 金属学报 37 109]

    [14]

    Tang Y B, Liu Y Q, Sun C H 2007 J. Mater. Res. 22 2711

    [15]

    Radwan M, Bahgat M 2007 J. Mater. Process. Technol. 181 99

    [16]

    Xu Z J, Chu R Q 2010 Nanomaterials and Nanotechnology (Beijing:Chemical Industry Press) p11 (in Chinese) [徐志军, 初瑞清 2010 纳米材料与纳米技术 (北京: 化学工业出版社) 第11页]

    [17]

    Drum C M, Mitchell J W 1964 Appl. Phys. Lett. 4 164

    [18]

    Yan G J, Chen G D, Lü H M 2006 Acta Chim. Sin. 64 1688 (in Chinese) [颜国君, 陈光德, 吕惠民 2006 化学学报 64 1688]

    [19]

    Moulder J F, StickleWF, Sobol P E, Bomben K D 1992 Handbookof X-ray Photoelectron Spectroscopy (Minnesota: Perkin-ElmerCorp.) p40

    [20]

    Li W 2005 Inorganic Whisker (Beijing:Chemical Industry Press)p34 (in Chinese) [李武 2005 无机晶须 (北京: 化学工业出版社) 第34页]

    [21]

    Masaya K, Junya Y A, Yasushi S 2007 Carbon 45 1105

    [22]

    Wu W, Du J H, Lin Y R, Chow L C, Bostanci H, Saarloos B A, Rini D P 2011 J. Heat Transfer 133 054504

  • [1]

    Shi Z H, Li K Z, Li H J, Wang C, Li Z Q 2005 J. Funct. Mater. 361944 (in Chinese) [石振海, 李克智, 李贺军, 王闯, 李照谦 2005 功能材料 36 1944]

    [2]

    Lü H M, Shi Z H, Zhao C, Wei P 2010 Acta Phys. Sin. 59 7956 (in Chinese) [吕惠民, 石振海, 赵超, 魏萍 2010 物理学报 59 7956]

    [3]

    Klett J, Hardy R, Romine E, Walls C, Burchell T 2000 Carbon 38953

    [4]

    Bruneten E, Tallaron C, Gras-Naulin N 2002 Carbon 40 1919

    [5]

    Li W Q, Zhang H B, Xiong X A 2011 J. Mater. Sci. 46 1143

    [6]

    Gan L H, Liu M X, Wang X, Tian C 2008 J. Tongji Univ. (NaturalScience) 36 1552(in Chinese) [甘礼华, 刘明贤, 王曦, 田辞 2008 同济大学学报 (自然科学版) textbf{36 1552]

    [7]

    Xiao N, Ling Z, Wang L P, Zhou Y, Qiu J S 2011 Carbon 49 1052

    [8]

    Luo R Y, Ni Y F, Li J S, Yang C L, Wang S B 2011 Mater. Sci.Eng. A 528 2023

    [9]

    Li W Q, Zhang H B, Xiong X, Feng X 2010 Mater. Sci. Eng. A527 2993

    [10]

    Lü H M, Chen G D, Yan G J, Ye H G 2007 Acta Phys. Sin. 562808 (in Chinese) [吕惠民, 陈光德, 颜国君, 耶红刚 2007 物理学报 56 2808]

    [11]

    Lü H M, Shi Z H, Chen G D 2009 Acta Phys. Sin. 58 6403 (in Chinese) [吕惠民, 石振海, 陈光德 2009 物理学报 58 6403]

    [12]

    Kohn J A, Cotter P G, Potter R A 1956 Am. Mineral. 41 355

    [13]

    Wang Y D, Zhou H P, Qiao L, Jin H B, Fu R L 2001 Acta Metal.Sin. 37 109 (in Chinese) [汪雨荻, 周和平, 乔梁, 金海波, 傅仁利 2001 金属学报 37 109]

    [14]

    Tang Y B, Liu Y Q, Sun C H 2007 J. Mater. Res. 22 2711

    [15]

    Radwan M, Bahgat M 2007 J. Mater. Process. Technol. 181 99

    [16]

    Xu Z J, Chu R Q 2010 Nanomaterials and Nanotechnology (Beijing:Chemical Industry Press) p11 (in Chinese) [徐志军, 初瑞清 2010 纳米材料与纳米技术 (北京: 化学工业出版社) 第11页]

    [17]

    Drum C M, Mitchell J W 1964 Appl. Phys. Lett. 4 164

    [18]

    Yan G J, Chen G D, Lü H M 2006 Acta Chim. Sin. 64 1688 (in Chinese) [颜国君, 陈光德, 吕惠民 2006 化学学报 64 1688]

    [19]

    Moulder J F, StickleWF, Sobol P E, Bomben K D 1992 Handbookof X-ray Photoelectron Spectroscopy (Minnesota: Perkin-ElmerCorp.) p40

    [20]

    Li W 2005 Inorganic Whisker (Beijing:Chemical Industry Press)p34 (in Chinese) [李武 2005 无机晶须 (北京: 化学工业出版社) 第34页]

    [21]

    Masaya K, Junya Y A, Yasushi S 2007 Carbon 45 1105

    [22]

    Wu W, Du J H, Lin Y R, Chow L C, Bostanci H, Saarloos B A, Rini D P 2011 J. Heat Transfer 133 054504

  • [1] 许思维, 王训四, 沈祥. 结合高分辨率X射线光电子能谱和拉曼散射研究GexGa8S92–x玻璃结构. 物理学报, 2023, 72(1): 017101. doi: 10.7498/aps.72.20221653
    [2] 杨蒙生, 易泰民, 郑凤成, 唐永建, 张林, 杜凯, 李宁, 赵利平, 柯博, 邢丕峰. 沉积态铀薄膜表面氧化的X射线光电子能谱. 物理学报, 2018, 67(2): 027301. doi: 10.7498/aps.67.20172055
    [3] 许思维, 王丽, 沈祥. GexSb20Se80-x玻璃的拉曼光谱和X射线光电子能谱. 物理学报, 2015, 64(22): 223302. doi: 10.7498/aps.64.223302
    [4] 杨发展, 沈丽如, 王世庆, 唐德礼, 金凡亚, 刘海峰. 等离子体增强化学气相沉积法制备含氢类金刚石膜的紫外Raman光谱和X射线光电子能谱研究. 物理学报, 2013, 62(1): 017802. doi: 10.7498/aps.62.017802
    [5] 韩录会, 张崇宏, 张丽卿, 杨义涛, 宋银, 孙友梅. 低速高电荷态重离子辐照的GaN晶体表面X射线光电子能谱研究. 物理学报, 2010, 59(7): 4584-4590. doi: 10.7498/aps.59.4584
    [6] 吕惠民, 石振海, 赵超, 魏萍. 空心微球/网络复合型碳泡沫材料制备与机理分析. 物理学报, 2010, 59(11): 7956-7960. doi: 10.7498/aps.59.7956
    [7] 欧谷平, 宋 珍, 桂文明, 张福甲. 原子力显微镜与x射线光电子能谱对LiBq4/ITO和LiBq4/CuPc/ITO的表面分析. 物理学报, 2005, 54(12): 5717-5722. doi: 10.7498/aps.54.5717
    [8] 冯玉清, 赵 昆, 朱 涛, 詹文山. 磁性隧道结热稳定性的x射线光电子能谱研究. 物理学报, 2005, 54(11): 5372-5376. doi: 10.7498/aps.54.5372
    [9] 何少龙, 李宏年, 李海洋, 张寒洁, 吕 斌, 何丕模, 鲍世宁, 徐亚伯. Yb掺杂C60薄膜的x射线光电子能谱研究. 物理学报, 2004, 53(3): 915-921. doi: 10.7498/aps.53.915
    [10] 杨武保, 范松华, 刘赤子, 张谷令, 王久丽, 杨思泽. 脉冲高能量密度等离子体法类金刚石膜的制备及分析. 物理学报, 2003, 52(1): 140-144. doi: 10.7498/aps.52.140
    [11] 苑进社, 陈光德, 齐鸣, 李爱珍, 徐卓. 分子束外延GaN薄膜的X射线光电子能谱和俄歇电子能谱研究. 物理学报, 2001, 50(12): 2429-2433. doi: 10.7498/aps.50.2429
    [12] 程宇航, 吴一平, 陈建国, 乔学亮, 谢长生, 杨业智, 莫少波. a-C∶H(N)薄膜结构的X射线光电子能谱分析. 物理学报, 1998, 47(1): 83-88. doi: 10.7498/aps.47.83
    [13] 季振国, 陈立登, 马向阳, 姚鸿年, 阙端麟. 发光多孔硅的X射线光电子能谱深度剖析. 物理学报, 1995, 44(1): 57-63. doi: 10.7498/aps.44.57
    [14] 施一生, 赵特秀, 刘洪图, 王晓平. Pd/W/Si(111)双层膜界面X射线光电子能谱与俄歇电子能谱研究. 物理学报, 1992, 41(11): 1849-1855. doi: 10.7498/aps.41.1849
    [15] 王楠林, 沙健, 张其瑞, 汪习清, 钱逸泰, 陈祖耀. Gd掺杂的Bi系2212相单晶电子状态的X射线光电子能谱研究. 物理学报, 1992, 41(4): 655-660. doi: 10.7498/aps.41.655
    [16] 钟战天, 王大文, 廖显伯, 范越, 李承芳, 牟善明. Au/a-Si:H界面X射线光电子能谱和俄歇电子能谱研究. 物理学报, 1991, 40(2): 275-280. doi: 10.7498/aps.40.275
    [17] 孟革, 沈电洪, 李楠, 谢侃, 林彰达, 王玉鹤, 李林. 钛与铋系高温超导材料界面相互作用的X射线光电子能谱研究. 物理学报, 1991, 40(12): 1992-1998. doi: 10.7498/aps.40.1992
    [18] 赵良仲. Ce(Ⅳ)和Ce(Ⅲ)化合物系列的X射线光电子能谱研究. 物理学报, 1989, 38(6): 987-990. doi: 10.7498/aps.38.987
    [19] 张酣, 何振辉, 赵勇, 孙式方, 钱逸泰, 张其瑞. Y—Ba—Cu—Al—O体系的X射线光电子能谱研究. 物理学报, 1989, 38(4): 689-693. doi: 10.7498/aps.38.689
    [20] 俞鸣人, 杨光, 王迅. 用X射线光电子能谱测定InP(100)清洁表面的原子浓度比. 物理学报, 1983, 32(6): 799-802. doi: 10.7498/aps.32.799
计量
  • 文章访问数:  5799
  • PDF下载量:  486
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-04-27
  • 修回日期:  2011-05-25
  • 刊出日期:  2012-03-15

/

返回文章
返回