搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

平行板微管道间Maxwell流体的高Zeta势周期电渗流动

长龙 菅永军

引用本文:
Citation:

平行板微管道间Maxwell流体的高Zeta势周期电渗流动

长龙, 菅永军

Time periodic electroosmotic flow of the generalized Maxwell fluids between two micro-parallel plates with high Zeta potential

Chang Long, Jian Yong-Jun
PDF
导出引用
  • 本文研究了两平行板微管道中线性黏弹性流体的周期电渗流动, 其中线性黏弹性流体的本构关系是由广义Maxwell模型描述的. 将电渗力作为体力, 解析求解了非线性的Poisson-Boltzmann (P-B)方程, 柯西动量方程和广义Maxwell本构方程. 通过数值计算, 分析了无量纲壁面Zeta势0 、 周期电渗流 (electroosmotic flow, EOF) 振荡雷诺数Re和无量纲弛豫时间 1 对速度剖面的影响. 结果表明: 对给定的电动宽度K(表示微管道的特征尺度与双电层厚度的比值)、 弛豫时间 1 和振荡雷诺数Re, 高Zeta势0 产生较大的EOF速度振幅, 并且速度剖面的变化主要集中在双电层 (electric double-layer, EDL) 的狭窄的区域. 此外, 随着弛豫时间的增长流体的弹性显著增加, 速度的变化可以延伸到整个流动的区域中. 对给定的雷诺数Re, 较长的弛豫时间1 导致EOF速度剖面较快的变化, 且速度剖面的振幅逐渐增大.
    In this study, semi-analytical solutions are presented for the time periodic (electroosmotic flow) of linear viscoelastic fluids between micro-parallel plates. The linear viscoelastic fluids used here are described by the general Maxwell model. The solution involves analytically solving the nonlinear Poisson-Boltzmann (P-B) equation, the Cauchy momentum equation and the general Maxwell constitutive equation. By numerical computations, the influences of the dimensionless wall Zeta potential0, the periodic EOF electric oscillating Reynolds number Re, and normalized relaxation times 1 on velocity profiles are presented. Results show that for prescribed electrokinetic width K, relaxation time 1 and oscillating Reynolds number Re, higher Zeta potential 0 will lead to larger amplitude of EOF velocity, and the variation of velocity is restricted to a very narrow region close to the Electric double-layer. In addition, with the increase of relaxation time 1, the elasticity of the fluid becomes conspicuous and the velocity variations can be expanded to the whole flow field. For prescribed Re, longer relaxation time 1 will lead to quick change of the EOF velocity profile, and the amplitude becomes larger gradually.
    • 基金项目: 国家自然科学基金(批准号: 11062005), 内蒙古自治区自然科学基金(批准号: 2010BS0107), 内蒙古大学学科带头人科研启动基金(批准号: Z20080211), 和内蒙古自治区自然科学基金重点项目(批准号: 2009ZD01)资助的课题
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11062005), Ph. D. Programs Foundation of Ministry of Education of China (Grant No. 20111501120001), Opening Fund of State Key Laboratory of Nonlinear Mechanics, the Inner Mongolia Natural Science Foundation of China (Grant No. 2010BS0107), the research start up fund for excellent talents at Inner Mongolia University (Grant No. Z20080211), the support of Natural Science Key Fund of Inner Mongolia (Grant No: 2009ZD01), and the Key Programs of the Inner Mongolia Finances and Economic College.
    [1]

    Stone H A, Stroock A D, Ajdari A 2004 Ann. Rev. Fluid Mech. 36 381

    [2]

    Bayraktar T, Pidugu S B 2006 Int. J. Heat Mass Transfer 49 815

    [3]

    Burgreen D, Nakache F R 1964 J. Phys. Chem. 68 1084

    [4]

    Levine S, Marriott J R, Neale G, Epstein N 1975 J. Colloid Interface Sci. 52 136

    [5]

    Tsao H K 2000 J. Colloid Interface Sci. 225 247

    [6]

    Kang Y J, Yang C, Huang X Y 2002 J. Colloid Interface Sci. 253 285

    [7]

    Hsu J P, Kao C Y, Tseng S J, Chen C J 2002 J. Colloid Interface Sci. 248 176

    [8]

    Yang C, Li D, Masliyah J H 1998 Int. J. Heat Mass Transfer 41 4229

    [9]

    Arulanandam S, Li D 2000 Colloids Surf. A: Physicochem. Eng. Aspects 161 89

    [10]

    Bianchi F, Ferrigno R, Girault H H 2000 Anal. Chem. 72 1987

    [11]

    Wang C Y, Liu Y H, Chang C C 2008 Phys. Fluids 20 063105

    [12]

    Dutta P, Beskok A 2001 Anal. Chem. 73 5097

    [13]

    Keh H J, Tseng H C 2001 J. Colloid Interface Sci. 242 450

    [14]

    Kang Y J, Yang C, Huang X Y 2002 Int. J. Eng. Sci. 40 2203

    [15]

    Wang X M, Chen B, Wu J K 2007 Phys. Fluids 19 127101

    [16]

    Chakraborty S, Ray S 2008 Phys. Fluids 20 083602

    [17]

    Chakraborty S, Srivastava A K 2007 Langmuir 23 12421

    [18]

    Qu W L, Li D Q 2000 J. Colloid Interface Sci. 224 397

    [19]

    Jian Y J, Yang L G, Liu Q S 2010 Phys. Fluids 22 042001

    [20]

    Das S, Chakraborty S 2006 Anal. Chim. Acta 559 15

    [21]

    Chakraborty S 2007 Anal. Chim. Acta 605 175

    [22]

    Zhao C, Zholkovskij E, Masliyah J H, Yang C 2008 J. Colloid Interface Sci. 326 503

    [23]

    Vasu N, De S 2010 Colloids and Surfaces A: Physicochem. Eng. Aspects 368 44

    [24]

    Zhao C, Yang C 2010 Electrophoresis 31 973

    [25]

    Tang G H, Li X F, He Y L, Tao W Q 2009 J. Non-Newtonian fluid Mech. 157 133

    [26]

    Wang R J, Lin J Z, Li Z H 2005 Binmedical Microdevices 7 131

    [27]

    Zhang K, Lin J Z, Li Z H 2006 Appl. Math. Mech. ( English Edition) 27 575

    [28]

    Lin J Z, Zhang K, Li H J 2006 Chin. Phys. 15 2688

    [29]

    Liu Q S, Jian Y J, Yang L G 2011 J. Non-Newtonian fluid Mech. 166 478

    [30]

    Jian Y J, Liu Q S, Yang L G 2011 J. Non-Newtonian fluid Mech. 166 1304

    [31]

    Jian Y J, Liu Q S, Duan H Z, Chang L, Yang L G 2011 The Sixth International Conference on Fluid Mechanics (ICFM6), Guang Zhou, June 30-July 3, p616

    [32]

    Bird R B, Stewart W E, Lightfoot E N 2001 Transport phenomena, Second Edition (New York: Wiley-Interscience Publication) p242

    [33]

    Gong L, Wu J, Wang L, Cao K 2008 Phys. Fluids 20 063603

    [34]

    Goswami P, Chakraborty S 2009 Langmuir 26 581

  • [1]

    Stone H A, Stroock A D, Ajdari A 2004 Ann. Rev. Fluid Mech. 36 381

    [2]

    Bayraktar T, Pidugu S B 2006 Int. J. Heat Mass Transfer 49 815

    [3]

    Burgreen D, Nakache F R 1964 J. Phys. Chem. 68 1084

    [4]

    Levine S, Marriott J R, Neale G, Epstein N 1975 J. Colloid Interface Sci. 52 136

    [5]

    Tsao H K 2000 J. Colloid Interface Sci. 225 247

    [6]

    Kang Y J, Yang C, Huang X Y 2002 J. Colloid Interface Sci. 253 285

    [7]

    Hsu J P, Kao C Y, Tseng S J, Chen C J 2002 J. Colloid Interface Sci. 248 176

    [8]

    Yang C, Li D, Masliyah J H 1998 Int. J. Heat Mass Transfer 41 4229

    [9]

    Arulanandam S, Li D 2000 Colloids Surf. A: Physicochem. Eng. Aspects 161 89

    [10]

    Bianchi F, Ferrigno R, Girault H H 2000 Anal. Chem. 72 1987

    [11]

    Wang C Y, Liu Y H, Chang C C 2008 Phys. Fluids 20 063105

    [12]

    Dutta P, Beskok A 2001 Anal. Chem. 73 5097

    [13]

    Keh H J, Tseng H C 2001 J. Colloid Interface Sci. 242 450

    [14]

    Kang Y J, Yang C, Huang X Y 2002 Int. J. Eng. Sci. 40 2203

    [15]

    Wang X M, Chen B, Wu J K 2007 Phys. Fluids 19 127101

    [16]

    Chakraborty S, Ray S 2008 Phys. Fluids 20 083602

    [17]

    Chakraborty S, Srivastava A K 2007 Langmuir 23 12421

    [18]

    Qu W L, Li D Q 2000 J. Colloid Interface Sci. 224 397

    [19]

    Jian Y J, Yang L G, Liu Q S 2010 Phys. Fluids 22 042001

    [20]

    Das S, Chakraborty S 2006 Anal. Chim. Acta 559 15

    [21]

    Chakraborty S 2007 Anal. Chim. Acta 605 175

    [22]

    Zhao C, Zholkovskij E, Masliyah J H, Yang C 2008 J. Colloid Interface Sci. 326 503

    [23]

    Vasu N, De S 2010 Colloids and Surfaces A: Physicochem. Eng. Aspects 368 44

    [24]

    Zhao C, Yang C 2010 Electrophoresis 31 973

    [25]

    Tang G H, Li X F, He Y L, Tao W Q 2009 J. Non-Newtonian fluid Mech. 157 133

    [26]

    Wang R J, Lin J Z, Li Z H 2005 Binmedical Microdevices 7 131

    [27]

    Zhang K, Lin J Z, Li Z H 2006 Appl. Math. Mech. ( English Edition) 27 575

    [28]

    Lin J Z, Zhang K, Li H J 2006 Chin. Phys. 15 2688

    [29]

    Liu Q S, Jian Y J, Yang L G 2011 J. Non-Newtonian fluid Mech. 166 478

    [30]

    Jian Y J, Liu Q S, Yang L G 2011 J. Non-Newtonian fluid Mech. 166 1304

    [31]

    Jian Y J, Liu Q S, Duan H Z, Chang L, Yang L G 2011 The Sixth International Conference on Fluid Mechanics (ICFM6), Guang Zhou, June 30-July 3, p616

    [32]

    Bird R B, Stewart W E, Lightfoot E N 2001 Transport phenomena, Second Edition (New York: Wiley-Interscience Publication) p242

    [33]

    Gong L, Wu J, Wang L, Cao K 2008 Phys. Fluids 20 063603

    [34]

    Goswami P, Chakraborty S 2009 Langmuir 26 581

  • [1] 孙宗利, 康艳霜, 张君霞. 非均匀流体的体积黏度: Maxwell弛豫模型. 物理学报, 2024, 73(6): 066601. doi: 10.7498/aps.73.20231459
    [2] 张天鸽, 任美蓉, 崔继峰, 陈小刚, 王怡丹. 变截面微管道中高zeta势下幂律流体的旋转电渗滑移流动. 物理学报, 2022, 71(13): 134701. doi: 10.7498/aps.71.20212327
    [3] 艾晋芳, 解军, 胡国辉. 零质量射流作用下红细胞在微管道中变形的数值模拟. 物理学报, 2020, 69(23): 234701. doi: 10.7498/aps.69.20200971
    [4] 王超, 陈英才, 周艳丽, 罗孟波. 两嵌段高分子链在周期管道内扩散的Monte Carlo模拟. 物理学报, 2017, 66(1): 018201. doi: 10.7498/aps.66.018201
    [5] 姜玉婷, 齐海涛. 微平行管道内Eyring流体的电渗滑移流动. 物理学报, 2015, 64(17): 174702. doi: 10.7498/aps.64.174702
    [6] 王晓娜, 耿兴国, 臧渡洋. 一维周期与准周期排列沟槽结构的流体减阻特性研究. 物理学报, 2013, 62(5): 054701. doi: 10.7498/aps.62.054701
    [7] 刘全生, 杨联贵, 苏洁. 微平行管道内Jeffrey流体的非定常电渗流动. 物理学报, 2013, 62(14): 144702. doi: 10.7498/aps.62.144702
    [8] 全军, 刘一星, 余亚斌. 相干平行板电容器对外场的动态响应. 物理学报, 2010, 59(2): 1237-1242. doi: 10.7498/aps.59.1237
    [9] 崔志文, 刘金霞, 王春霞, 王克协. 基于Biot-喷射流统一模型Maxwell流体饱和孔隙介质中的弹性波. 物理学报, 2010, 59(12): 8655-8661. doi: 10.7498/aps.59.8655
    [10] 孟庆苗, 蒋继建, 刘景伦, 邓德力. 动态Dilaton-Maxwell黑洞的广义Stefan-Boltzmann定律. 物理学报, 2009, 58(1): 78-82. doi: 10.7498/aps.58.78
    [11] 谢国锋. 利用溅射原子角分布规律改进平行板静电场法. 物理学报, 2008, 57(3): 1784-1787. doi: 10.7498/aps.57.1784
    [12] 葛 洪, 张晓丹, 岳 强, 赵 静, 赵 颖. 甚高频等离子体增强化学气相沉积大面积平行板电极间真空电势差分布研究. 物理学报, 2008, 57(8): 5105-5110. doi: 10.7498/aps.57.5105
    [13] 郝鹏飞, 姚朝晖, 何 枫. 粗糙微管道内液体流动特性的实验研究. 物理学报, 2007, 56(8): 4728-4732. doi: 10.7498/aps.56.4728
    [14] 谢国锋, 王德武, 应纯同. 计及溅射损失的平行板静电场法离子引出和收集. 物理学报, 2005, 54(4): 1543-1551. doi: 10.7498/aps.54.1543
    [15] 宋晓鹏, 陈 戎, 包成玉, 王德武. 平行板静电场法离子引出的对称收集. 物理学报, 2005, 54(9): 4198-4202. doi: 10.7498/aps.54.4198
    [16] 丁英涛, 何 枫, 姚朝晖, 沈孟育, 王学芳. 变截面微管道内声速点位置及临界压比. 物理学报, 2004, 53(7): 2050-2055. doi: 10.7498/aps.53.2050
    [17] 白占武. 非平行导线型边界下Maxwell-Chern-Simons场的Casimir效应. 物理学报, 2004, 53(8): 2472-2477. doi: 10.7498/aps.53.2472
    [18] 汪凯戈, 王玉龙, 孙寅官. 中心流形理论在广义Maxwell-Bloch激光方程中的应用. 物理学报, 1996, 45(1): 46-51. doi: 10.7498/aps.45.46
    [19] 陈金玉, 丁鄂江. 具有不同作用势的两平行墙间流体的浸润相变. 物理学报, 1993, 42(8): 1278-1289. doi: 10.7498/aps.42.1278
    [20] 傅秀军, 郭子政, 周培勤, 刘有延. 广义Fibonacci准周期链能谱性质. 物理学报, 1992, 41(8): 1330-1337. doi: 10.7498/aps.41.1330
计量
  • 文章访问数:  6365
  • PDF下载量:  610
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-07-12
  • 修回日期:  2011-10-10
  • 刊出日期:  2012-06-05

/

返回文章
返回