|
|
纳秒紫外重复脉冲激光烧蚀单晶硅的热力学过程研究 |
包凌东1, 韩敬华1, 段涛2, 孙年春1, 高翔1, 冯国英1, 杨李茗3, 牛瑞华4, 刘全喜4 |
1. 四川大学电子信息学院, 成都 610064; 2. 西南科技大学极端条件物质特性实验室, 绵阳 621010; 3. 成都精密光学工程研究中心,成都 610041; 4. 西南技术物理研究所,成都 610041 |
Investigation of thermodynamic progress of silicon ablated by nanosecond uv repetitive pulse laser |
Bao Ling-Dong1, Han Jing-Hua1, Duan Tao2, Sun Nian-Chun1, Gao Xiang1, Feng Guo-Ying1, Yang Li-Ming3, Niu Rui-Hua4, Liu Quan-Xi4 |
1. College of Electronics & Information Engineering, Sichuan University, Chengdu 610064, China; 2. Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang 621010, China; 3. Chengdu Fine Optical Engineering Research Center, Chengdu 610041, China; 4. Southwest Institute of Technical Physics, Chengdu 610041, China |
|
摘要: 采用波长为355 nm的纳秒紫外重复脉冲激光对单晶硅片进行了盲孔加工实验, 观测了随脉冲增加激光烧蚀硅片的外观形貌和盲孔孔深、孔径的变化规律, 并对紫外激光辐照硅片的热力学过程进行了分析. 研究结果表明:紫外激光加工硅盲孔是基于热、力效应共同作用的结果, 热效应会使得硅材料熔化、气化甚至发生电离产生激光等离子体,为材料的去除提供条件;激光等离子体冲击波以及高温气态物向外膨胀会对熔化材料产生压力致使其向外喷射,为重复脉冲的进一步烧蚀提供了条件;力效应主要沿着激光传输的方向,垂直于硅表面,使得去除部位主要集中在孔的深度方向,达到较高的孔径比,实验观察孔径比可达8:1;此外,激光等离子体的产生也阻止了激光对靶面的作用,加之随孔深的增加激光发生散焦,使得烧蚀深度有一定的限制,实验观察烧蚀脉冲个数在前100个时加工效率较高.
关键词:
激光烧蚀
单晶硅
盲孔
激光等离子体冲击波
|
|
Abstract: The blind holes processing experiment is conducted on the silicon under the radiation of a 355 nm nanosecond UV repetitive pulse laser. With the increase of the laser pulse number, the variations of the silicon morphology,the depth and aperture of the blind holes are observed, and the thermodynamic process of UV laser irradiating silicon is analyzed. The results show that the formation of the blind silicon hole in the laser ablation process is due to the interaction between thermal effect and force effect. Thermal effect results in fusion, vaporization and even producing laser plasma by ionization in silicon, which is essential to the removal of the material. The molten material is compressed by the plasma shock wave and the expansion of the high-temperature gaseous material,and then ejection outward, which will benefit the further ablation; the force propagates along the laser transmission direction,perpendicular to the silicon surface, so the removal parts are distributed mainly along the depth direction of the hole, reaching a high aperture ratio, which is up to 8:1 in our experiments. In addition, the laser-induced plasma also prevents the effect of laser on the target surface, and with the increase of hole depth, laser defocusing occurs. The two aspects finally restrict the ablation depth. The results shows that in the process of laser irradiation on the material, the ablation efficiency is much higher when the former 100 pulses arrived than the sequent laser pulses.
Keywords:
laser ablation
silicon
blind hole
laser-induced plasma shock wave
|
收稿日期: 2012-01-03
|
PACS: |
79.20.Eb
|
(Laser ablation)
|
|
79.20.Ds
|
(Laser-beam impact phenomena)
|
|
61.72.uf
|
(Ge and Si)
|
|
61.80.Ba
|
(Ultraviolet, visible, and infrared radiation effects (including laser radiation))
|
|
基金: 国家自然科学基金重大项目(批准号: 60890203)、 西南科技大学极端条件物质特性实验室开放基金(批准号: 11zxjk08)和四川大学青年教师科研启动基金(批准号: 2009SCU1108)资助的课题. |
References
[1] | Norton J F Google Patents 3265855 [1966-08-09]
|
[2] | Young D J 2010 VLSI Design Automation and Test (VLSI-DAT), 2010 International Symposium on Salt Lake City, UT, USA, April 26—29, 2010, p130
|
[3] | Oita T 2009 Ultrasonics Symposium (IUS), 2009 IEEE International Tokyo, Japan, September 20—23, 2009, p1173
|
[4] | Bäuerle D 2011 Laser processing and chemistry (2nd Ed.) (Berlin and New York: Springer) p57
|
[5] | Steen W M, Mazumder J 1998 Laser material processing (2nd Ed.) (London and New York: Springer) p121
|
[6] | Simon P, Ihlemann J 1996 Appl. Phys. A: Mater. Sci. Proc. 63 505
|
[7] | Niino H, Kawaguchi Y, Sato T, Narazaki A, Gumpenberger T, Kurosaki R 2006 J. Laser Micro/Nanoeng 1 39
|
[8] | Pfleging W, Bernauer W, Hanemann T, Torge M 2002 Microsyst. Technol. 9 67
|
[9] | Zhu L H 2008 China construction dynamic: the sun energy 35 (in Chinese) [朱黎辉 2008 中国建设动态: 阳光能源 35]
|
[10] | Landgraf R, Rieske R, Danilewsky A,Wolter K J 2008 Electronics System-Integration Technology Conference Dresden, Dresden, Sept 1—4, 2008 p1023
|
[11] | Lee Y H, Choi K J 2010 Int. J. Pres. Eng. Man. 11 501
|
[12] | Brandi F, Burdet N, Carzino R, Diaspro A 2010 Opt. Express 18 23488
|
[13] | Herrmann R, Gerlach J, Campbell E 1998 Appl. Phys. A: Mater. Sci. Proc. 66 35
|
[14] | Allman 1994 Laser-beam interactions with materials physical principles and applications (Beijing: Science Press) p55 (in Chinese) [奥尔曼 1994 激光束与材料相互作用的物理原理及应用 (北京:科学出版社) 第55页]
|
[15] | Wakaki M, Kudo K,Shibuya T 2007 Physical properties and data of optical materials (1st Ed.) (California: CRC press) p86
|
[16] | Tao S, Wu B, Zhou Y, Gao Y 2009 J. Appl. Phys. 106 123505
|
[17] | Weber M J 2003 Handbook Of Optical Materials (1st Ed.) (California: CRC press) p145
|
[18] | D'Anna E, Luby S, Luches A, Majkova E, Martino M 1993 Appl. Phys. A: Mater. Sci. Proc. 56 429
|
[19] | Zhang L, Ni X W, Lu J, Liu J, Dai G 2011 Opt. Precis. Eng. 19 437 (in Chinese) [张梁, 倪晓武, 陆建, 刘剑, 戴罡 2011 光学精密工程 19 437]
|
[20] | Kodama R, Norreys P, Mima K, Dangor A, Evans R, Fujita H, Kitagawa Y, Krusheinick K, Miyakoshi T, Miyanaga N 2001 Nature 412 798
|
[21] | Durfee C G, Lynch J, Milchberg H 1995 Phys. Rev. E 51 2368
|
[22] | Phipps C, Turner T, Harrison R, York G, Osborne W, Anderson G, Corlis X, Haynes L, Steele H, Spicochi K 1988 J. Appl. Phys. 64 1083
|
[23] | Ren J 2005 Ph. D. Dissertation (California: stanford university)
|
[24] | Lu J Ni X W 1996Laser interactions with materials physics (1st Ed.) (Beijing: China Machine Press) p69 (in Chinese) [陆建, 倪晓武 1996 激光与材料相互作用物理学(北京:机械工业出版社) 第69页]
|
[25] | Ancona A, Sibillano T, Lugará P M, Gonnella G, Pascazio G, Maffione D 2006 J. Phys. D: Appl. Phys. 39 563
|
[26] | Dykhno I, Ignatchenko G, Bogachenkov E European Patent EP20000943390 [2002-06-12]
|
[27] | Armon E, Zvirin Y, Laufer G, Solan A 1989 J. Appl. Phys. 65 4995
|
[28] | Park K W, Na S J 2010 Appl. Surf. Sci. 256 2392
|
[29] | Modest M F 2006 Journal of Heat Transfer 128 653
|
[30] | Tao S, Wu B, Zhou Y, Gao Y 2009 J. Appl. Phys. 106 123507
|
[31] | Chen J K, Beraun J E 2003 J. Opt. A: Pure Appl. Op. 5 168
|
[32] | Pakhomov A, Thompson M, Gregory D 2003 J. Phys. D: Appl. Phys. 36 2067
|
[33] | Schaffer C B, Brodeur A, Mazur E 2001 Meas. Sci. Technol. 12 1784
|
[34] | Ngoi B, Venkatakrishnan K, Lim E, Tan B, Koh L 2001 Opt. Laser. Eng. 35 361
|
[35] | Zhang N, Zhu X, Yang J, Wang X, Wang M 2007 Phys. Rev. Lett. 99 167602
|
[36] | Perez D, Lewis L 2004 Appl. Phys. A: Mater. 79 987
|
[37] | Lorazo P, Lewis L J, Meunier M 2003 Phys. Rev. Lett. 91 225502
|
[1]
|
张光超, 徐进. 直拉单晶硅中洁净区形成后铜沉淀行为的研究[J]. 物理学报, 2013, 62(7): 076103.
|
[2]
|
王金涛, 刘子勇. 基于静力悬浮原理的单晶硅球间微量密度差异精密测量方法研究[J]. 物理学报, 2013, 62(3): 037702.
|
[3]
|
刘慎业, 黄翼翔, 胡昕, 张继彦, 杨国洪, 李军, 易荣清, 杜华冰, 丁永坤. 高强度二倍频激光辐照银薄膜靶的烧蚀和X光辐射实验研究[J]. 物理学报, 2013, 62(3): 035202.
|
[4]
|
刘月华, 陈明, 刘向东, 崔清强, 赵明文. 透镜到靶材的距离对脉冲激光诱导等离子体的影响机理研究[J]. 物理学报, 2013, 62(2): 025203.
|
[5]
|
王英龙, 高建聪, 褚立志, 邓泽超, 丁学成, 梁伟华, 傅广生. 低压下气流对激光沉积纳米硅晶化及尺寸的影响[J]. 物理学报, 2013, 62(2): 025204.
|
[6]
|
常浩, 金星, 陈朝阳. 纳秒激光烧蚀冲量耦合数值模拟[J]. 物理学报, 2013, 62(19): 195203.
|
[7]
|
徐嶺茂, 高超, 董鹏, 赵建江, 马向阳, 杨德仁. 单晶硅片中的位错在快速热处理过程中的滑移[J]. 物理学报, 2013, 62(16): 168101.
|
[8]
|
陈明, 李爽, 崔清强, 刘向东. 激光烧蚀高纯Zn形成的微米金属球体对后续脉冲激光的耦合增强效应[J]. 物理学报, 2013, 62(16): 165202.
|
[9]
|
田嘉彤,冯仕猛,王坤霞,徐华天,杨树泉,刘峰,黄建华,裴俊. 新型添加剂对单晶硅表面金字塔形貌的影响[J]. 物理学报, 2012, 61(6): 066803.
|
[10]
|
司丽娜, 郭丹, 雒建斌. 氧化硅团簇切削单晶硅粗糙峰的分子动力学模拟研究[J]. 物理学报, 2012, 61(16): 168103.
|
[11]
|
褚立志, 邓泽超, 丁学成, 赵红东, 王英龙, 傅广生. Ar环境气压对纳米Si晶粒成核区范围的影响[J]. 物理学报, 2012, 61(10): 108102.
|
[12]
|
王永志, 徐进, 王娜婷, 吉川, 张光超. 铜沉淀对直拉硅单晶中洁净区形成的影响[J]. 物理学报, 2012, 61(1): 016105.
|
[13]
|
何敏华;张端明. 脉冲激光沉积动力学研究进展[J]. 物理, 2012, 41(03): 00.
|
[14]
|
方合, 王顺利, 李立群, 李培刚, 刘爱萍, 唐为华. 液相激光烧蚀合成ZnO及Zn/ZnO纳米颗粒及其光致发光性能[J]. 物理学报, 2011, 60(9): 096102.
|
[15]
|
高勋, 宋晓伟, 郭凯敏, 陶海岩, 林景全. 飞秒激光烧蚀硅表面产生等离子体的发射光谱研究[J]. 物理学报, 2011, 60(2): 025203.
|
|
|
|