搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

InSb面阵探测器法线方向力学参数选取研究

孟庆端 余倩 张立文 吕衍秋

引用本文:
Citation:

InSb面阵探测器法线方向力学参数选取研究

孟庆端, 余倩, 张立文, 吕衍秋

Mechanical parameters selection in InSb focal plane array detector normal direction

Meng Qing-Duan, Yu Qian, Zhang Li-Wen, Lü Yan-Qiu
PDF
导出引用
  • 为明确InSb芯片前表面结构缺陷和背面减薄工艺对InSb芯片变形的影响, 本文采用降低InSb芯片法线方向杨氏模量的方式, 基于热冲击下InSb芯片的典型形变特征来探索InSb芯片力学参数的选取依据. 模拟结果表明: 当InSb芯片法线方向杨氏模量取体材料的30%时, 最大Von Mises应力值和法线方向最大应变值均出现在N电极区域, 且极值呈非连续分布, 这与InSb焦平面探测器碎裂统计报告中典型裂纹起源于N电极区域及多条裂纹同时出现的结论相符合. 此外, InSb芯片中铟柱上方区域向上凸起, 台面结隔离槽区域往下凹陷, 该形变分布也与典型碎裂照片中InSb芯片的应变分布保持一致. 因此, 基于InSb芯片法线方向应变的判据除了能够预测裂纹起源地及裂纹分布外, 还能提供探测器阵列中心区域Z方向应变分布及N电极区域Z方向的应变增强效应, 为InSb芯片力学参数的选取提供了依据.
    In order to learn the effects of front surface structural defects and back surface thinning process on the InSb chip deformation, its elastic modulus along normal direction is reduced in InSb structural modeling, and based on the typical strain character appearing under thermal shock, the mechanical parameter selection basis is deduced in this paper. Simulation results show that when the out-of-plane elastic modulus of InSb chip is set to be 30 percent Young's modulus, both the maximum Von Mises stress and Z component of strain appear in the N electrode zone, and the extremum values present non-continuous distribution. These are in good agreement with fracture origination zone and crack distribution in the fracture statistics results of 128 128 InSb infrared focal plane array under thermal shock. Besides, the region above the indium bump array is convex upward, and the domain above the isolation trough is concave downward, they are also identical with the scenario of Z component of strain in InSb chip under thermal shock. All these results indicate that the Z component of strain criterion can not only predict both crack origination zone and crack distribution, but also support both Z component of strain distribution in the central region and Z component of strain enhancement effect in the InSb chip N electrode zone.
    • 基金项目: 国家自然科学基金青年科学基金(批准号: 61107083), 航空科学基金(批准号: 20100142003)和中国科学院力学研究所非线性力学国家重点实验室开放基金(批准号: 2012007)资助的课题.
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No.61107083), the Aero Science Foundation of China (Grant No.20100142003), and the State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, China (Grant No.2012007).
    [1]

    He L, Yang D J, Ni G Q 2011 Introduction to Advanced Focal Plane Arrays (1st Ed.) (Beijing: National Defence Industry Press) p1 (in Chinese) [何力, 杨定江, 倪国强 2011 先进焦平面技术导论(第1版) (北京:国防工业出版社) 第1页]

    [2]

    Tidrow M Z 2005 Proceedings of SPIE, Bellingham, WA, March 25-28, 2005 p217

    [3]

    Gong H M, Liu D F 2008Infrared Laser Eng. 37 18 (in Chinese) [龚海梅, 刘大福 2008 红外与激光工程 37 18]

    [4]

    Dorn R J, Finger G, Huster G, Lizon J L, Mehrgan H, Meyer M, Stegmeier J, Moorwood A F M 2002 Eur. Southern Observatory. 1 1

    [5]

    Meng Q D, Zhang X L, Zhang L W, Lv Y Q 2012 Acta Phys. Sin. 61 190701 (in Chinese) [孟庆端, 张晓玲, 张立文, 吕衍秋 2012 物理学报 61 190701]

    [6]

    Liu Y D, Du H Y, Zhang G, Dong S, Ma J S 2005 Laser Infrared. 35 177 (in Chinese) [刘豫东, 杜红燕, 张刚, 董硕, 马莒生 2005 激光与红外 35 177]

    [7]

    Jiun H H, Ahmad I, Jalar A, Omar G 2006 Microelectron. Reliab. 46 836

    [8]

    Wasmer K, Ballif C, Pouvreau C, Schulz D, Michler J 2008 J. Mater. Process. Technol. 198 114

    [9]

    Schönfelder S, Ebert M, Bagdahn J 2006 Proceedings of EuroSimE, Como, Italy, April 24-26, 2006 p1

    [10]

    Pandolfi A, Weinberg K 2011 Eng. Fract. Mech. 78 2052

    [11]

    Jiang Y T, Tsao S, O'Sullivan T, Razeghi M, Brown G J 2004 Infrared Phys. Techn. 45 143

    [12]

    He Y, Moreira B E, Overson A, Nakamura S H, Bider C, Briscoe J F 2000 Thermochimica Acta. 357-358 1

    [13]

    White G K, Collins J G 1972 J. Low. Temp. Phys. 7 43

    [14]

    Cheng X, Liu C, Silberschmidt V V 2012 Comp. Mater. Sci. 52 274

    [15]

    Chang R W, Patrick M F 2009 J. Electron. Mater. 38 1855

    [16]

    Pau I, Majeed B, Razeeb K M, Barton J 2006 Acta Mater. 54 3991

    [17]

    Hauck T, Bohm C, Müller W H 2005 Proceedings of EuroSimE, Berlin, Germany, April 18-20, 2005 p242

  • [1]

    He L, Yang D J, Ni G Q 2011 Introduction to Advanced Focal Plane Arrays (1st Ed.) (Beijing: National Defence Industry Press) p1 (in Chinese) [何力, 杨定江, 倪国强 2011 先进焦平面技术导论(第1版) (北京:国防工业出版社) 第1页]

    [2]

    Tidrow M Z 2005 Proceedings of SPIE, Bellingham, WA, March 25-28, 2005 p217

    [3]

    Gong H M, Liu D F 2008Infrared Laser Eng. 37 18 (in Chinese) [龚海梅, 刘大福 2008 红外与激光工程 37 18]

    [4]

    Dorn R J, Finger G, Huster G, Lizon J L, Mehrgan H, Meyer M, Stegmeier J, Moorwood A F M 2002 Eur. Southern Observatory. 1 1

    [5]

    Meng Q D, Zhang X L, Zhang L W, Lv Y Q 2012 Acta Phys. Sin. 61 190701 (in Chinese) [孟庆端, 张晓玲, 张立文, 吕衍秋 2012 物理学报 61 190701]

    [6]

    Liu Y D, Du H Y, Zhang G, Dong S, Ma J S 2005 Laser Infrared. 35 177 (in Chinese) [刘豫东, 杜红燕, 张刚, 董硕, 马莒生 2005 激光与红外 35 177]

    [7]

    Jiun H H, Ahmad I, Jalar A, Omar G 2006 Microelectron. Reliab. 46 836

    [8]

    Wasmer K, Ballif C, Pouvreau C, Schulz D, Michler J 2008 J. Mater. Process. Technol. 198 114

    [9]

    Schönfelder S, Ebert M, Bagdahn J 2006 Proceedings of EuroSimE, Como, Italy, April 24-26, 2006 p1

    [10]

    Pandolfi A, Weinberg K 2011 Eng. Fract. Mech. 78 2052

    [11]

    Jiang Y T, Tsao S, O'Sullivan T, Razeghi M, Brown G J 2004 Infrared Phys. Techn. 45 143

    [12]

    He Y, Moreira B E, Overson A, Nakamura S H, Bider C, Briscoe J F 2000 Thermochimica Acta. 357-358 1

    [13]

    White G K, Collins J G 1972 J. Low. Temp. Phys. 7 43

    [14]

    Cheng X, Liu C, Silberschmidt V V 2012 Comp. Mater. Sci. 52 274

    [15]

    Chang R W, Patrick M F 2009 J. Electron. Mater. 38 1855

    [16]

    Pau I, Majeed B, Razeeb K M, Barton J 2006 Acta Mater. 54 3991

    [17]

    Hauck T, Bohm C, Müller W H 2005 Proceedings of EuroSimE, Berlin, Germany, April 18-20, 2005 p242

  • [1] 曹宇, 刘超颖, 赵耀, 那艳玲, 江崇旭, 王长刚, 周静, 于皓. 双电子传输层结构硫硒化锑太阳电池的界面特性优化. 物理学报, 2022, 71(3): 038802. doi: 10.7498/aps.71.20211525
    [2] 曹宇, 王长刚, 于皓. 双电子传输层结构硫硒化锑太阳电池的界面特性优化研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211525
    [3] 曹宇, 蒋家豪, 刘超颖, 凌同, 孟丹, 周静, 刘欢, 王俊尧. 高效硫硒化锑薄膜太阳电池中的渐变能隙结构. 物理学报, 2021, 70(12): 128802. doi: 10.7498/aps.70.20202016
    [4] 姜伟, 赵欢, 汪国崔, 王新柯, 韩鹏, 孙文峰, 叶佳声, 冯胜飞, 张岩. 应用太赫兹焦平面成像方法研究氧化镁晶体在太赫兹波段的双折射特性. 物理学报, 2020, 69(20): 208702. doi: 10.7498/aps.69.20200766
    [5] 曹宇, 祝新运, 陈翰博, 王长刚, 张鑫童, 侯秉东, 申明仁, 周静. 硒化锑薄膜太阳电池的模拟与结构优化研究. 物理学报, 2018, 67(24): 247301. doi: 10.7498/aps.67.20181745
    [6] 张晓玲, 司乐飞, 孟庆端, 吕衍秋, 司俊杰. 考虑底充胶固化过程的InSb面阵探测器结构分析模型. 物理学报, 2017, 66(1): 016102. doi: 10.7498/aps.66.016102
    [7] 谷文浩, 常胜江, 范飞, 张选洲. 基于锑化铟亚波长阵列结构的太赫兹聚焦器件. 物理学报, 2016, 65(1): 010701. doi: 10.7498/aps.65.010701
    [8] 张晓玲, 孟庆端, 张立文, 耿东峰, 吕衍秋. 液氮冲击中锑化铟焦平面探测器形变研究. 物理学报, 2014, 63(15): 156101. doi: 10.7498/aps.63.156101
    [9] 孟庆端, 张晓玲, 张立文, 吕衍秋. 128× 128 InSb探测器结构模型研究. 物理学报, 2012, 61(19): 190701. doi: 10.7498/aps.61.190701
    [10] 王利, 毕思文, 王果果. 利用三平面腔镜共焦腔产生多模压缩光束. 物理学报, 2010, 59(1): 87-91. doi: 10.7498/aps.59.87
    [11] 乔 辉, 廖 毅, 胡伟达, 邓 屹, 袁永刚, 张勤耀, 李向阳, 龚海梅. 碲镉汞焦平面光伏器件的实时γ辐照效应研究. 物理学报, 2008, 57(11): 7088-7093. doi: 10.7498/aps.57.7088
    [12] 俞振中, 金刚, 陈新强, 马可军. 锑化铟单晶中杂质的反常分凝. 物理学报, 1980, 29(1): 19-24. doi: 10.7498/aps.29.19
    [13] 俞振中, 金刚, 陈新强, 马可军. 锑化铟单晶的小平面生长及孪晶. 物理学报, 1980, 29(1): 11-18. doi: 10.7498/aps.29.11
    [14] 王国文, 包燕鹏, 曹金瑞, 张光勇. 平面应力对氧化亚铜晶体四个激子线系的影响. 物理学报, 1966, 22(7): 743-748. doi: 10.7498/aps.22.743
    [15] 吴自强, 汤定元. p型锑化铟中的噪声. 物理学报, 1966, 22(2): 205-213. doi: 10.7498/aps.22.205
    [16] 徐鸿达, 林兰英. 锑化铟的热处理. 物理学报, 1966, 22(6): 698-707. doi: 10.7498/aps.22.698
    [17] 黄启圣, 汤定元. 锑化铟中载流子的复合过程. 物理学报, 1965, 21(5): 1038-1048. doi: 10.7498/aps.21.1038
    [18] 萧楠, 刘益焕. 锗、硅、锑化铟和砷化镓的热膨涨——用X射线衍射法测量. 物理学报, 1964, 20(8): 699-704. doi: 10.7498/aps.20.699
    [19] 林蘭英, 徐鸿达. 锑化铟的机械损伤. 物理学报, 1964, 20(12): 1268-1277. doi: 10.7498/aps.20.1268
    [20] 赵晓峰, 陈式刚, 蒋月明. 锑与铟的解析原子波函数. 物理学报, 1962, 18(3): 175-176. doi: 10.7498/aps.18.175
计量
  • 文章访问数:  5346
  • PDF下载量:  613
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-05-01
  • 修回日期:  2012-06-08
  • 刊出日期:  2012-11-05

/

返回文章
返回