搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

液滴在气固交界面变形移动问题的光滑粒子流体动力学模拟

强洪夫 刘开 陈福振

引用本文:
Citation:

液滴在气固交界面变形移动问题的光滑粒子流体动力学模拟

强洪夫, 刘开, 陈福振

Numerical implementation of deformation and motion of droplet at the interface between vapor and solid surface with smoothed particle hydrodynamics methodology

Qiang Hong-Fu, Liu Kai, Chen Fu-Zhen
PDF
导出引用
  • 为准确模拟液滴在气固交界面变形移动问题, 对基于连续表面张力模型的表面张力光滑粒子流体动力学方法进行了改进. 改进方法采用新的边界处理方式和界面法向修正方法,即将固体边界虚粒子色函数值根据液面的位置 进行相应设定以保证气-液-固三相交界处流体粒子的界面法向沿接触线法线方向, 引入Brackbill提出的壁面附着力边界条件处理方法,对在气-液-固三相交界处的流体粒子及部分固体边界 虚粒子的界面法向进行修正,修正前后保持法向模值不变,得到了含壁面附着力边界条件的表面张力算法. 模拟了受壁面附着力影响的水槽中液面的变化过程、液滴润湿壁面过程和剪切气流驱动液滴在固体表面 变形脱落过程,并与流体体积函数方法进行了对比.结果表明,该方法在处理壁面附着力问题时精度较高, 稳定性较好,适合处理工程中液滴在气固交界面变形移动问题.
    In order to simulate the deformation and motion of droplet at the interface between vapor and solid surface, the smoothed particle hydrodynamics method with continuum surface force model for surface tension is modified in this paper. A surface tension algorithm with boundary conditions of wall adhesion is derived using a new treatment of boundary conditions and a corrective algorithm of particle interface normal. The colours of virtual solid particles are set according to the position of fluid surface to assure that the interface normal of particles at the junction of vapor, fluid and solid phase is normal to the contact line. By introducing Brackbill's treatment of boundary conditions of wall adhesion, the interface normal between fluid particles and some virtual solid particles at the junction of vapor, fluid and solid phase is corrected. However the module of the interface normal is kept constant. Finally, based on the new algorithm, the changing process of fluid surface in a tank, wetting process of a droplet and distortion process of a droplet on solid surface driven by shear flow are simulated. The results are compared with those obtained by volume of fluid method, showing that the new method has higher accuracy and better stability, and it is adapted to deal with the engineering problems such as the deformation and motion of droplets at the interface between vapor and solid surface.
    • 基金项目: 国家重点基础研究发展计划(批准号: 973-61338)和第二炮兵工程学院创新性探索研究项目(批准号: EPXY0806)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 973-61338) and the Innovative Research Project of the Second Artillery Engineering University, China (Grant No. EPXY0806).
    [1]

    Tseng Y T, Tseng F G, Chen Y F, Cheng C C 2004 Sensor. Actuat. A: Phys. 114 292

    [2]

    Daniel S, Sircar S, Gliem J, Chaudhury M K 2002 Langmuir 18 3404

    [3]

    Brackbill J U, Kothe D B, Zemach C 1992 J. Comput. Phys. 100 335

    [4]

    Liu J, Koshizuka S, Oka Y 2005 J. Comput. Phys. 202 65

    [5]

    Wang F, He F 2006 Acta Phys. Sin. 55 1005 (in Chinese) [王飞, 何枫 2006 物理学报 55 1005]

    [6]

    Liu M B, Chang J Z, Liu H T, Su T X 2011 Int. J. Comput. Met. 8 637

    [7]

    Chang J Z, Liu M B, Liu H T 2008 Acta Phys. Sin. 57 3954 (in Chinese) [常建忠, 刘谋斌, 刘汉涛 2008 物理学报 57 3954]

    [8]

    Zhang M K, Chen S, Shang Z 2010 Acta Phys. Sin. 61 034701 (in Chinese) [张明焜, 陈硕, 尚智 2010 物理学报 61 034701]

    [9]

    Fang H S, Bao K, Wei J A, Zhang H, Wu E H, Zheng L L 2009 Numer. Heat. Tr. A: Appl. 55 124

    [10]

    Bao K, Zhang H, Zheng L L, Wu E H 2009 Comput. Animat. Virt. W 20 311

    [11]

    Morris J P 2000 Int. J. Numer. Methods Fluids 33 333

    [12]

    Liu M B, Liu G R, Lam K Y 2003 Int. J. Comput. Eng. Sci. 4 405

    [13]

    Liu M B, Liu G R 2005 J. Comput. Mech. 35 332

    [14]

    Qiang H F, Chen F Z, Gao W R 2011 China J. Comput. Phys. 28 375 (in Chinese) [强洪夫, 陈福振, 高巍然 2011 计算物理 28 375]

    [15]

    Qiang H F, Chen F Z, Gao W R 2011 Comput. Model. Eng. 77 239

    [16]

    Monaghan J J 2000 J. Comput. Phys. 159 290

    [17]

    Liu G R, Liu M B 2003 Smoothed Particle Hydrodynamics: A Meshfree Particle Method (Singapore: World Scientific) p132

    [18]

    Ott F, Schnetter E 2003 ArXiv: Physics/0303112v3 [physics. comp-ph]

    [19]

    Morris J P, Fox P J, Zhu Y 1997 J. Comput. Phys. 136 214

    [20]

    Gray J P, Monaghan J J, Swift R P 2001 Comput. Methods Appl. Mech. Eng. 190 6641

    [21]

    Monaghan J J 1989 J. Comput. Phys. 82 1

    [22]

    Cao X P, Jiang Y M 2005 Acta Phys. Sin. 54 2202 (in Chinese) [曹晓平, 蒋亦民 2005 物理学报 54 2202]

    [23]

    Fan J, Hu C B, Zhang Y L, He G Q 2011 J. Exp. Fluid. Mech. 25 5 (in Chinese) [范健, 胡春波, 张育林, 何国强 2011 实验流体力学 25 5]

  • [1]

    Tseng Y T, Tseng F G, Chen Y F, Cheng C C 2004 Sensor. Actuat. A: Phys. 114 292

    [2]

    Daniel S, Sircar S, Gliem J, Chaudhury M K 2002 Langmuir 18 3404

    [3]

    Brackbill J U, Kothe D B, Zemach C 1992 J. Comput. Phys. 100 335

    [4]

    Liu J, Koshizuka S, Oka Y 2005 J. Comput. Phys. 202 65

    [5]

    Wang F, He F 2006 Acta Phys. Sin. 55 1005 (in Chinese) [王飞, 何枫 2006 物理学报 55 1005]

    [6]

    Liu M B, Chang J Z, Liu H T, Su T X 2011 Int. J. Comput. Met. 8 637

    [7]

    Chang J Z, Liu M B, Liu H T 2008 Acta Phys. Sin. 57 3954 (in Chinese) [常建忠, 刘谋斌, 刘汉涛 2008 物理学报 57 3954]

    [8]

    Zhang M K, Chen S, Shang Z 2010 Acta Phys. Sin. 61 034701 (in Chinese) [张明焜, 陈硕, 尚智 2010 物理学报 61 034701]

    [9]

    Fang H S, Bao K, Wei J A, Zhang H, Wu E H, Zheng L L 2009 Numer. Heat. Tr. A: Appl. 55 124

    [10]

    Bao K, Zhang H, Zheng L L, Wu E H 2009 Comput. Animat. Virt. W 20 311

    [11]

    Morris J P 2000 Int. J. Numer. Methods Fluids 33 333

    [12]

    Liu M B, Liu G R, Lam K Y 2003 Int. J. Comput. Eng. Sci. 4 405

    [13]

    Liu M B, Liu G R 2005 J. Comput. Mech. 35 332

    [14]

    Qiang H F, Chen F Z, Gao W R 2011 China J. Comput. Phys. 28 375 (in Chinese) [强洪夫, 陈福振, 高巍然 2011 计算物理 28 375]

    [15]

    Qiang H F, Chen F Z, Gao W R 2011 Comput. Model. Eng. 77 239

    [16]

    Monaghan J J 2000 J. Comput. Phys. 159 290

    [17]

    Liu G R, Liu M B 2003 Smoothed Particle Hydrodynamics: A Meshfree Particle Method (Singapore: World Scientific) p132

    [18]

    Ott F, Schnetter E 2003 ArXiv: Physics/0303112v3 [physics. comp-ph]

    [19]

    Morris J P, Fox P J, Zhu Y 1997 J. Comput. Phys. 136 214

    [20]

    Gray J P, Monaghan J J, Swift R P 2001 Comput. Methods Appl. Mech. Eng. 190 6641

    [21]

    Monaghan J J 1989 J. Comput. Phys. 82 1

    [22]

    Cao X P, Jiang Y M 2005 Acta Phys. Sin. 54 2202 (in Chinese) [曹晓平, 蒋亦民 2005 物理学报 54 2202]

    [23]

    Fan J, Hu C B, Zhang Y L, He G Q 2011 J. Exp. Fluid. Mech. 25 5 (in Chinese) [范健, 胡春波, 张育林, 何国强 2011 实验流体力学 25 5]

  • [1] 乔小溪, 张向军, 陈平, 田煜, 孟永钢. 微矩形凹槽表面液滴各向异性浸润行为的研究. 物理学报, 2020, 69(3): 034702. doi: 10.7498/aps.69.20191429
    [2] 叶学民, 李永康, 李春曦. 平衡接触角对受热液滴在水平壁面上铺展特性的影响. 物理学报, 2016, 65(10): 104704. doi: 10.7498/aps.65.104704
    [3] 林林, 袁儒强, 张欣欣, 王晓东. 液滴在梯度微结构表面上的铺展动力学分析. 物理学报, 2015, 64(15): 154705. doi: 10.7498/aps.64.154705
    [4] 王宇翔, 陈硕. 微粗糙结构表面液滴浸润特性的多体耗散粒子动力学研究. 物理学报, 2015, 64(5): 054701. doi: 10.7498/aps.64.054701
    [5] 孙鹏楠, 李云波, 明付仁. 自由上浮气泡运动特性的光滑粒子流体动力学模拟. 物理学报, 2015, 64(17): 174701. doi: 10.7498/aps.64.174701
    [6] 陈福振, 强洪夫, 高巍然. 风沙运动问题的SPH-FVM耦合方法数值模拟研究. 物理学报, 2014, 63(13): 130202. doi: 10.7498/aps.63.130202
    [7] 雷娟棉, 黄灿. 一种改进的光滑粒子流体动力学前处理方法. 物理学报, 2014, 63(14): 144702. doi: 10.7498/aps.63.144702
    [8] 韩亚伟, 强洪夫, 赵玖玲, 高巍然. 光滑粒子流体动力学方法固壁处理的一种新型排斥力模型. 物理学报, 2013, 62(4): 044702. doi: 10.7498/aps.62.044702
    [9] 强洪夫, 石超, 陈福振, 韩亚伟. 基于大密度差多相流SPH方法的二维液滴碰撞数值模拟. 物理学报, 2013, 62(21): 214701. doi: 10.7498/aps.62.214701
    [10] 王奔, 念敬妍, 铁璐, 张亚斌, 郭志光. 稳定超疏水性表面的理论进展. 物理学报, 2013, 62(14): 146801. doi: 10.7498/aps.62.146801
    [11] 景蔚萱, 王兵, 牛玲玲, 齐含, 蒋庄德, 陈路加, 周帆. ZnO纳米线薄膜的合成参数、表面形貌和接触角关系研究. 物理学报, 2013, 62(21): 218102. doi: 10.7498/aps.62.218102
    [12] 葛宋, 陈民. 接触角与液固界面热阻关系的分子动力学模拟. 物理学报, 2013, 62(11): 110204. doi: 10.7498/aps.62.110204
    [13] 徐升华, 王林伟, 孙祉伟, 王彩霞. 容器内角处流体界面特性与Surface Evolver程序适用性的研究. 物理学报, 2012, 61(16): 166801. doi: 10.7498/aps.61.166801
    [14] 王小松, 朱如曾. 固液黏着功的Berthelot平均规则的推广及应用. 物理学报, 2010, 59(11): 8010-8014. doi: 10.7498/aps.59.8010
    [15] 朱如曾, 闫红, 王小松. 关于固体表面上液体球冠的平衡条件问题——兼评“冷凝器壁面滴状冷凝的热力学机理及最佳接触角”等文章. 物理学报, 2010, 59(10): 7271-7277. doi: 10.7498/aps.59.7271
    [16] 王文霞, 施娟, 邱冰, 李华兵. 用晶格玻尔兹曼方法研究微结构表面的疏水性能. 物理学报, 2010, 59(12): 8371-8376. doi: 10.7498/aps.59.8371
    [17] 顾春元, 狄勤丰, 施利毅, 吴 非, 王文昌, 余祖斌. 纳米粒子构建表面的超疏水性能实验研究. 物理学报, 2008, 57(5): 3071-3076. doi: 10.7498/aps.57.3071
    [18] 王 飞, 何 枫. 微管道内两相流数值算法及在电浸润液滴控制中的应用. 物理学报, 2006, 55(3): 1005-1010. doi: 10.7498/aps.55.1005
    [19] 曹治觉, 夏伯丽, 张 云. 论小接触角下实现滴状冷凝的可能性. 物理学报, 2003, 52(10): 2427-2431. doi: 10.7498/aps.52.2427
    [20] 曹治觉, 郭 愚. 冷凝器壁面滴状冷凝的热力学机理及最佳接触角. 物理学报, 1999, 48(10): 1823-1830. doi: 10.7498/aps.48.1823
计量
  • 文章访问数:  6070
  • PDF下载量:  690
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-06-05
  • 修回日期:  2012-06-26
  • 刊出日期:  2012-10-05

/

返回文章
返回