搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

从头计算法计算Yb3+掺杂钽酸盐的晶体场参数和能级结构

高进云 张庆礼 孙敦陆 刘文鹏 杨华军 王小飞 殷绍唐

引用本文:
Citation:

从头计算法计算Yb3+掺杂钽酸盐的晶体场参数和能级结构

高进云, 张庆礼, 孙敦陆, 刘文鹏, 杨华军, 王小飞, 殷绍唐

Ab-initio calculations of the crystal-field parameters and energy level structure for Yb3+ doped in tantalate

Gao Jin-Yun, Zhang Qing-Li, Sun Dun-Lu, Liu Wen-Peng, Yang Hua-Jun, Wang Xiao-Fei, Yin Shao-Tang
PDF
导出引用
  • 介绍了一种基于从头计算的DV-X方法和有效哈密顿量模型, 它可以计算晶体中掺杂离子的晶体场参数和旋轨耦合参数, 尤其适合计算低对称性的晶体. 对于低对称性的晶体, 参数的数目比能级的数目多, 因此通过实验能级拟合确定所有的参数不太准确, 而从头计算法可以准确地确定所有的晶体场参数和旋轨耦合参数. 首先用这种模型计算了Yb3+掺杂GdTaO4晶体中的晶体场参数和旋轨耦合参数, 然后给出了Yb3+在GdTaO4中的能级结构, 并分析了Yb3+: GdTaO4的发射谱形成一个连续的发射带. 这有利于激光的调谐和锁模激光输出, 预言了Yb3+: GdTaO4 有望成为新型全固态超短脉冲激光工作物质. 同样用这种模型分别计算了Yb3+掺杂YTaO4和 ScTaO4中的晶体场参数和旋轨耦合参数, 并给出了Yb3+在YTaO4 和ScTaO4中的能级结构, 得到了与Yb3+: GdTaO4晶体类似的结论.
    In this paper, the DV-X method of ab-initio calculations and the effective Hamiltonian model are introduced to calculate the crystal-field and spin-orbit parameters of rare earth ions doped in various crystals, especially for the crystal with low-symmetry. For the low-symmetry crystal, the number of parameters is more than that of energy levels, thus experimental energy levels fitting cannot determine all parameters, while ab-initio calculations can determine all crystal-field and spin-orbit parameters accurately. Firstly, the crystal-field and spin-orbit parameters of Yb3+ doped in GdTaO4 crystal are calculated by this model, and then the energy level structure of Yb3+:GdTaO4 is given and the continuous emission band of Yb3+:GdTaO4 emission spectrum is analyzed, which is conducive to the laser tunable and laser mode-locking output, so Yb3+:GdTaO4 is a potential laser medium for high efficiency laser operation and new ultrashort pulse output. Also, the crystal-field and spin-orbit parameters of Yb3+ doped in YTaO4 and ScTaO4 are calculated by this model, and the energy level structures of Yb3+:YTaO4 and Yb3+ :ScTaO4 are given, which leads to a conclusion similar to that drawn from the Yb3+:GdTaO4 crystal.
    • 基金项目: 国家自然科学基金(批准号: 90922003, 51172236, 50872135, 91122021)和中国科学院知识创新工程(批准号: YYYJ-1002)资助的课题.
    • Funds: Project supported by the National Nature Science Foundation of China (Grant Nos. 90922003, 51172236, 50872135, 91122021) and the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. YYYJ-1002).
    [1]

    Pontes F M, Maurera M M, Souza A G, Longo E, Leite E R, Magnani R, Machado M C, Pizani P S, Varela J A 2003 J. Eur. Ceram. Soc. 23 3001

    [2]

    Gironnet J, Mikhailik V B, Kraus H, Marcillac P, Coron N 2008 Nucl. Instrum. Meth. A 594 358

    [3]

    Lempicki A, Glodo J, Coron N 1998 Nucl. Instrum. Meth. A 416 333

    [4]

    Forbes T Z, Nyman M, Rodriguez M A, Navrotsky A 2010 J. Solid State Chem. 183 2516

    [5]

    Liu W P, Zhang Q L, Ding L H, Sun D L, Luo J Q, Yin S T 2009 J. Alloys Compd. 474 226

    [6]

    Cava R J, Murphy D W, Zahurak S M 1983 J. Electrochem. Soc. 130 2345

    [7]

    Silva R A, Tirao G, Cusatis C, Andreeta J P 2005 J. Cryst. Growth 274 512

    [8]

    Blasse G, Brill A 1970 J. Lumin. 3 109

    [9]

    Tsunekawa S, Yamauchi H, Sasaki K, Yamaguchi Y, Fukuda T 1996 J. Alloys Compd. 245 89

    [10]

    Li B, Gu Z N Lin J H, Su M Z 2000 J. Mater. Sci. 35 1139

    [11]

    Dieke G H 1968 Spectra and Energy Levels of Rare Earth Ions in Crystals (New York: Interscience New York) p12

    [12]

    Carnall W T, Fields P R, Rajnak K 1968 J. Chem. Phys. 49 4424

    [13]

    Newman D J, Betty N 2000 Crystal Field Handbook (Cambridge: Cambridge University Press) p43

    [14]

    Guo C X, Cui H B 1996 Acta Phys. Sin. 45 1409 (in Chinese) [郭常新, 崔宏滨 1996 物理学报 45 1409]

    [15]

    Ruiperez F, Barandiaran A Seijo L 2005 J. Chem. Phys. 123 244703

    [16]

    Pascual J L, Schamps J, Barandiaran Z, Seijo L 2006 Phys. Rev. B 74 104105

    [17]

    Andriesson J, Kolk E, Dorenbos P 2007 Phys. Rev. B 76 075124

    [18]

    Lin Q B, Li R Q, Wen Y H, Zhu Z Z 2008 Acta Phys. Sin. 57 181 (in Chinese) [林秋宝, 李仁全, 文玉华, 朱梓忠 2008 物理学报 57 181]

    [19]

    Reid M F, Duan C K, Zhou H W 2009 J. Alloys Compd. 488 591

    [20]

    Reid M F, Hu L S Frank S, Duan C K Xia S D, Yin M 2010 Eur. J. Inorg. Chem. 2010 2649

    [21]

    Rosen A, Ellis D E 1975 J. Chem. Phys. 62 3039

    [22]

    Hu L S, Reid M F, Duan C K, Xia S D, Yin M 2011 J. Phys.: Condens. Matter 23 045501

    [23]

    Pieteraon L V, Reid M F, Wegh R, Soverna S, Meijerink A 2002 Phys. Rev. B 65 045113

    [24]

    Zhang Q L, Zhou W L, Liu W P, Ding L H, Luo J Q, Yin S T, Jiang H H 2010 Acta Opt. Sin. 30 849 (in Chinese) [张庆礼, 周文龙, 刘文鹏, 丁丽华, 罗建乔, 殷绍唐, 江海河 2010 光学学报 30 849]

    [25]

    Newman D J, Betty N 2000 Crystal Field Handbook (Cambridge: Cambridge University Press) pp24-26

  • [1]

    Pontes F M, Maurera M M, Souza A G, Longo E, Leite E R, Magnani R, Machado M C, Pizani P S, Varela J A 2003 J. Eur. Ceram. Soc. 23 3001

    [2]

    Gironnet J, Mikhailik V B, Kraus H, Marcillac P, Coron N 2008 Nucl. Instrum. Meth. A 594 358

    [3]

    Lempicki A, Glodo J, Coron N 1998 Nucl. Instrum. Meth. A 416 333

    [4]

    Forbes T Z, Nyman M, Rodriguez M A, Navrotsky A 2010 J. Solid State Chem. 183 2516

    [5]

    Liu W P, Zhang Q L, Ding L H, Sun D L, Luo J Q, Yin S T 2009 J. Alloys Compd. 474 226

    [6]

    Cava R J, Murphy D W, Zahurak S M 1983 J. Electrochem. Soc. 130 2345

    [7]

    Silva R A, Tirao G, Cusatis C, Andreeta J P 2005 J. Cryst. Growth 274 512

    [8]

    Blasse G, Brill A 1970 J. Lumin. 3 109

    [9]

    Tsunekawa S, Yamauchi H, Sasaki K, Yamaguchi Y, Fukuda T 1996 J. Alloys Compd. 245 89

    [10]

    Li B, Gu Z N Lin J H, Su M Z 2000 J. Mater. Sci. 35 1139

    [11]

    Dieke G H 1968 Spectra and Energy Levels of Rare Earth Ions in Crystals (New York: Interscience New York) p12

    [12]

    Carnall W T, Fields P R, Rajnak K 1968 J. Chem. Phys. 49 4424

    [13]

    Newman D J, Betty N 2000 Crystal Field Handbook (Cambridge: Cambridge University Press) p43

    [14]

    Guo C X, Cui H B 1996 Acta Phys. Sin. 45 1409 (in Chinese) [郭常新, 崔宏滨 1996 物理学报 45 1409]

    [15]

    Ruiperez F, Barandiaran A Seijo L 2005 J. Chem. Phys. 123 244703

    [16]

    Pascual J L, Schamps J, Barandiaran Z, Seijo L 2006 Phys. Rev. B 74 104105

    [17]

    Andriesson J, Kolk E, Dorenbos P 2007 Phys. Rev. B 76 075124

    [18]

    Lin Q B, Li R Q, Wen Y H, Zhu Z Z 2008 Acta Phys. Sin. 57 181 (in Chinese) [林秋宝, 李仁全, 文玉华, 朱梓忠 2008 物理学报 57 181]

    [19]

    Reid M F, Duan C K, Zhou H W 2009 J. Alloys Compd. 488 591

    [20]

    Reid M F, Hu L S Frank S, Duan C K Xia S D, Yin M 2010 Eur. J. Inorg. Chem. 2010 2649

    [21]

    Rosen A, Ellis D E 1975 J. Chem. Phys. 62 3039

    [22]

    Hu L S, Reid M F, Duan C K, Xia S D, Yin M 2011 J. Phys.: Condens. Matter 23 045501

    [23]

    Pieteraon L V, Reid M F, Wegh R, Soverna S, Meijerink A 2002 Phys. Rev. B 65 045113

    [24]

    Zhang Q L, Zhou W L, Liu W P, Ding L H, Luo J Q, Yin S T, Jiang H H 2010 Acta Opt. Sin. 30 849 (in Chinese) [张庆礼, 周文龙, 刘文鹏, 丁丽华, 罗建乔, 殷绍唐, 江海河 2010 光学学报 30 849]

    [25]

    Newman D J, Betty N 2000 Crystal Field Handbook (Cambridge: Cambridge University Press) pp24-26

  • [1] 张慧洁, 贺衎. 哈密顿量宇称-时间对称性的刻画. 物理学报, 2024, 73(4): 040302. doi: 10.7498/aps.73.20230458
    [2] 樊颖, 张庆礼, 高进云, 高宇茜, 黄磊, 刘耀. Nd3+:GdScO3晶体场能级及拟合分析. 物理学报, 2024, 73(4): 044207. doi: 10.7498/aps.73.20231475
    [3] 董珊珊, 秦立国, 刘福窑, 龚黎华, 黄接辉. 哈密顿量诱导的量子演化速度. 物理学报, 2023, 72(22): 220301. doi: 10.7498/aps.72.20231009
    [4] 李竞, 丁海涛, 张丹伟. 非厄米哈密顿量中的量子Fisher信息与参数估计. 物理学报, 2023, 72(20): 200601. doi: 10.7498/aps.72.20230862
    [5] 吕程烨, 陈英炜, 谢牧廷, 李雪阳, 于宏宇, 钟阳, 向红军. 外加电磁场下周期性体系的第一性原理计算方法. 物理学报, 2023, 72(23): 237102. doi: 10.7498/aps.72.20231313
    [6] 廖庆洪, 邓伟灿, 文健, 周南润, 刘念华. 纳米机械谐振器耦合量子比特非厄米哈密顿量诱导的声子阻塞. 物理学报, 2019, 68(11): 114203. doi: 10.7498/aps.68.20182263
    [7] 杨维清, 张胤, 高敏, 林媛, 赵小云. 掺Gd3+钼酸盐AMoO4 (A=Ca, Sr, Ba, Pb)自旋哈密顿参量的理论计算. 物理学报, 2013, 62(4): 047102. doi: 10.7498/aps.62.047102
    [8] 汪盛烈, 蔡欣, 刘劲松. 有外加电源的串联光折变晶体回路中的独立空间全息-哈密顿屏蔽孤子对. 物理学报, 2012, 61(6): 064213. doi: 10.7498/aps.61.064213
    [9] 刘漾, 巩华荣, 魏彦玉, 宫玉彬, 王文祥, 廖复疆. 有效抑制光子晶体加载矩形谐振腔中模式竞争的方法. 物理学报, 2009, 58(11): 7845-7851. doi: 10.7498/aps.58.7845
    [10] 赵兴涛, 侯蓝田, 刘兆伦, 王 伟, 魏红彦, 马景瑞. 改进的全矢量有效折射率方法分析光子晶体光纤的色散特性. 物理学报, 2007, 56(4): 2275-2280. doi: 10.7498/aps.56.2275
    [11] 张德生, 董孝义, 张伟刚, 王 志. 用阶跃有效折射率模型研究光子晶体光纤色散特性. 物理学报, 2005, 54(3): 1235-1240. doi: 10.7498/aps.54.1235
    [12] 杨子元. 晶体材料中3d2态离子自旋哈密顿参量的微观起源. 物理学报, 2004, 53(6): 1981-1988. doi: 10.7498/aps.53.1981
    [13] 史庆藩, 李粮生, 张 梅. “禁忌”3-磁振子相互作用哈密顿项的有效性分析. 物理学报, 2004, 53(11): 3916-3919. doi: 10.7498/aps.53.3916
    [14] 陈增军, 宁西京. 非厄米哈密顿量的物理意义. 物理学报, 2003, 52(11): 2683-2686. doi: 10.7498/aps.52.2683
    [15] 杨金龙, 夏上达, 汪克林. DV-X2计算红宝石的晶场谱. 物理学报, 1990, 39(11): 1835-1841. doi: 10.7498/aps.39.1835
    [16] 李宝祥. 稀土五磷酸盐晶体显微硬度的测定. 物理学报, 1989, 38(1): 128-133. doi: 10.7498/aps.38.128
    [17] 蒋祺, 陶瑞宝. 有任意带满的紧束缚哈密顿量的实空间重整化群研究. 物理学报, 1989, 38(11): 1778-1784. doi: 10.7498/aps.38.1778
    [18] 周晴. 二元合金振动哈密顿量的对角化. 物理学报, 1988, 37(6): 1003-1009. doi: 10.7498/aps.37.1003
    [19] 李宝祥. 稀土五磷酸盐晶体折射率和密度的测定. 物理学报, 1987, 36(6): 823-827. doi: 10.7498/aps.36.823
    [20] 王正行. 用变分法讨论超导体隧道体系的近似哈密顿量. 物理学报, 1979, 28(5): 48-58. doi: 10.7498/aps.28.48
计量
  • 文章访问数:  5809
  • PDF下载量:  550
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-07-01
  • 修回日期:  2012-07-20
  • 刊出日期:  2013-01-05

/

返回文章
返回