搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

0.5Ba(Ti0.8Zr0.2)O3-0.5(Ba0.7Ca0.3)TiO3压电薄膜的摩擦、磨损性能

张艳 王增梅 陈云飞 郭新立 孙伟 袁国亮 殷江 刘治国

引用本文:
Citation:

0.5Ba(Ti0.8Zr0.2)O3-0.5(Ba0.7Ca0.3)TiO3压电薄膜的摩擦、磨损性能

张艳, 王增梅, 陈云飞, 郭新立, 孙伟, 袁国亮, 殷江, 刘治国

Friction and wear performance of the 0.5Ba(Ti0.8Zr0.2)O3-0.5(Ba0.7Ca0.3)TiO3 piezoelectric film

Zhang Yan, Wang Zeng-Mei, Chen Yun-Fei, Guo Xin-Li, Sun Wei, Yuan Guo-Liang, Yin Jiang, Liu Zhi-Guo
PDF
导出引用
  • 具有准同型相界组分的0.5Ba(Ti0.8Zr0.2)O3-0.5(Ba0.7Ca0.3)TiO3 (BZT-0.5BCT)陶瓷, 表现出优异的铁电、压电性能, 作为一种具有潜在应用前景的无铅压电材料得到广泛关注. 本文采用溶胶-凝胶方法在Si(100)基底上制备了BZT-0.5BCT压电薄膜. 使用原子力显微镜和扫描电子显微镜测量得到样品的形貌图, 形貌图表明该方法制备的无铅压电薄膜表面光滑, 晶粒大小均匀、呈半球形, 直径为80–100 nm, 厚度为1.7 μm, 膜的内部有气孔.摩擦力实验表明, 压电薄膜样品与硅针尖之间存在静电力的作用, 导致其摩擦力远大于硅针尖与SiO2之间的摩擦力, 但是两者的摩擦系数基本相同.划痕实验表明, BZT-0.5BC薄膜具有很强的法向承载能力, 但是切向抗磨损能力差, 样品的平均弹性模量为23.64 GPa± 5 GPa, 其硬度为2.7–4 GPa, 两者均略低于压电陶瓷Pb(Zr, Ti)O3材料的体态值.
    As a lead-free piezoelectric material with potential application, 0.5Ba(Ti0.8Zr0.2)O3-0.5(Ba0.7Ca0.3)TiO3 (BZT-0.5BCT) ceramics, which has a morphotropic phase boundary composition, deserves much attention due to its excellent ferroelectric and piezoelectric properties. BZT-0.5BCT lead-free piezoelectric film has been synthesized on a Si (100) substrate by Sol-Gel process. The topography of the film measured using an atomic force microscope and a scanning electron microscope shows that the surface of the prepared film is smooth, and the grain is in the shape of hemisphere with a diameter of 80-100 nm. The film is 1.7 μm in thickness, with pores inside. Friction experiments show that the friction between the tip and the piezoelectric film is much larger than that between the tip and the SiO2 substrate, because of the existence of electrostatic force between the film and the silicon tip. However, the friction coefficients obtained are approximately equal. Nano-scratch experiments show that the BZT-0.5BCT film has a high normal carrying capacity, but a poor tangential wear resistance. The average elastic modulus of the film is 23.64 GPa ± 5 GPa, and its hardness is 2.7-4 GPa, both being slightly lower than those of the bulk value in PZT ceramics.
    • 基金项目: 国家重点基础研究发展计划 (批准号: 2012CB619401)、国家自然科学基金(批准号: 51002029, 11134004)、教育部博士点科研专项基金(批准号: 20100092120039) 和晶体材料国家重点实验室开放课题(批准号: KF1107)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2012CB619401), the National Natural Science Foundation of China (Grant Nos. 51002029, 11134004), the Ph. D. Programs Foundation of Ministry of Education of China (Grant No. 20100092120039), and the Opening Project for State Key Laboratory of Crystal Materials, Shandong University, China (Grant No. KF1107).
    [1]

    Jaffe B, Cook W, Jaffe H 1971 Piezoeletric Ceramics (New York: Academic Press) p92

    [2]

    Cross E 2004 Nature 432 24

    [3]

    Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T, Nakamura M 2004 Nature 432 84

    [4]

    He C, Fu X, Xu F, Wang J, Zhu K, Du C, Liu Y 2012 Chin. Phys. B 21 054207

    [5]

    He C, Xu F, Wang J, Du C, Zhu K, Liu Y 2011 J. Appl. Phys. 110 083513

    [6]

    He C, Chen H, Sun L, Wang J, Xu F, Du C, Zhu K, Liu Y 2012 Cryst. Res. Tech. 47 610

    [7]

    Takenaka T, Nagata H 2005 J. Eur. Ceram. Soc. 25 2693

    [8]

    Ren X B 2004 Nat. Mater. 3 91

    [9]

    Zhang S J, Xia R, Shrout T R, Zang G Z, Wang J F 2006 J. Appl. Phys. 100 104108

    [10]

    Bao H X, Zhou C, Xue D Z, Gao J H, Ren X B 2010 J. Phys. D: Appl. Phys. 43 465401

    [11]

    Shrout T R, Zhang S J 2007 J. Electroceram. 19 111

    [12]

    Liu W F, Ren X B 2009 Phys. Rev. Lett. 103 257602

    [13]

    Hutter J L, Bechhoefer J 1993 Rev. Sci. Instrum. 64 1868

    [14]

    Ogletree D F, Carpick R W, Salmeron M 1996 Rev. Sci. Instrum. 67 3298

    [15]

    Oliver W C, Pharra G M 2004 J. Mater. Res. 19 3

    [16]

    Mate C, McClelland G, Erlandsson R, Chiang S 1987 Phys. Rev. Lett. 591942

    [17]

    Bahr D F, Robach J S, Wring J S, Francis L F, Gerberich W W 1999 Mater. Sci. Eng. A 259 126

  • [1]

    Jaffe B, Cook W, Jaffe H 1971 Piezoeletric Ceramics (New York: Academic Press) p92

    [2]

    Cross E 2004 Nature 432 24

    [3]

    Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T, Nakamura M 2004 Nature 432 84

    [4]

    He C, Fu X, Xu F, Wang J, Zhu K, Du C, Liu Y 2012 Chin. Phys. B 21 054207

    [5]

    He C, Xu F, Wang J, Du C, Zhu K, Liu Y 2011 J. Appl. Phys. 110 083513

    [6]

    He C, Chen H, Sun L, Wang J, Xu F, Du C, Zhu K, Liu Y 2012 Cryst. Res. Tech. 47 610

    [7]

    Takenaka T, Nagata H 2005 J. Eur. Ceram. Soc. 25 2693

    [8]

    Ren X B 2004 Nat. Mater. 3 91

    [9]

    Zhang S J, Xia R, Shrout T R, Zang G Z, Wang J F 2006 J. Appl. Phys. 100 104108

    [10]

    Bao H X, Zhou C, Xue D Z, Gao J H, Ren X B 2010 J. Phys. D: Appl. Phys. 43 465401

    [11]

    Shrout T R, Zhang S J 2007 J. Electroceram. 19 111

    [12]

    Liu W F, Ren X B 2009 Phys. Rev. Lett. 103 257602

    [13]

    Hutter J L, Bechhoefer J 1993 Rev. Sci. Instrum. 64 1868

    [14]

    Ogletree D F, Carpick R W, Salmeron M 1996 Rev. Sci. Instrum. 67 3298

    [15]

    Oliver W C, Pharra G M 2004 J. Mater. Res. 19 3

    [16]

    Mate C, McClelland G, Erlandsson R, Chiang S 1987 Phys. Rev. Lett. 591942

    [17]

    Bahr D F, Robach J S, Wring J S, Francis L F, Gerberich W W 1999 Mater. Sci. Eng. A 259 126

  • [1] 王胜, 陈晶晶, 翁盛槟. 纳米孪晶界对可动位错演化特性与金属Al强化机理探究. 物理学报, 2022, 71(2): 029601. doi: 10.7498/aps.71.20211305
    [2] 陈晶晶, 邱小林, 李柯, 周丹, 袁军军. 纳米晶CoNiCrFeMn高熵合金力学性能的原子尺度分析. 物理学报, 2022, 71(19): 199601. doi: 10.7498/aps.71.20220733
    [3] 陆益敏, 黄国俊, 程勇, 王赛, 刘旭, 韦尚方, 米朝伟. 脉冲激光沉积无氢钨掺杂类金刚石膜的摩擦与机械性能. 物理学报, 2021, 70(4): 046801. doi: 10.7498/aps.70.20201505
    [4] 陈晶晶. 纳米孪晶界对可动位错演化特性与金属Al强化机理探究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211305
    [5] 汉芮岐, 宋海洋, 安敏荣, 李卫卫, 马佳丽. 石墨烯/铝基复合材料在纳米压痕过程中位错与石墨烯相互作用机制的模拟研究. 物理学报, 2021, 70(6): 066201. doi: 10.7498/aps.70.20201591
    [6] 李锐, 刘腾, 陈翔, 陈思聪, 符义红, 刘琳. 界面结构对Cu/Ni多层膜纳米压痕特性影响的分子动力学模拟. 物理学报, 2018, 67(19): 190202. doi: 10.7498/aps.67.20180958
    [7] 廖光开, 龙志林, 许福, 刘为, 张志洋, 杨妙. 基于分数阶流变模型的铁基块体非晶合金黏弹性行为研究. 物理学报, 2015, 64(13): 136101. doi: 10.7498/aps.64.136101
    [8] 刘育良, 陈志刚, 孙大兴, 张广玉. 磁头-磁盘接触作用力对磁记录层信息强度影响规律的定量研究. 物理学报, 2015, 64(23): 237502. doi: 10.7498/aps.64.237502
    [9] 胡兴健, 郑百林, 杨彪, 余金桂, 贺鹏飞, 岳珠峰. 初始压入位置对Ni基单晶合金纳米压痕影响研究. 物理学报, 2015, 64(7): 076201. doi: 10.7498/aps.64.076201
    [10] 胡兴健, 郑百林, 胡腾越, 杨彪, 贺鹏飞, 岳珠峰. 考虑相界效应的Ni基单晶合金纳米压痕模拟. 物理学报, 2014, 63(17): 176201. doi: 10.7498/aps.63.176201
    [11] 王亚珍, 黄平. 纳米级随机粗糙表面微观滑动摩擦力的计算研究. 物理学报, 2013, 62(10): 106801. doi: 10.7498/aps.62.106801
    [12] 安涛, 文懋, 田宏伟, 王丽丽, 宋立军, 郑伟涛. TiN薄膜在纳米压痕和纳米划痕下的断裂行为. 物理学报, 2013, 62(13): 136201. doi: 10.7498/aps.62.136201
    [13] 何智兵, 阳志林, 闫建成, 宋之敏, 卢铁城. 辉光放电聚合物结构及力学性质研究. 物理学报, 2011, 60(8): 086803. doi: 10.7498/aps.60.086803
    [14] 权伟龙, 李红轩, 吉利, 赵飞, 杜雯, 周惠娣, 陈建敏. 类金刚石薄膜力学特性的分子动力学模拟. 物理学报, 2010, 59(8): 5687-5691. doi: 10.7498/aps.59.5687
    [15] 张勇, 张崇宏, 周丽宏, 李炳生, 杨义涛. 氦离子注入4H-SiC晶体的纳米硬度研究. 物理学报, 2010, 59(6): 4130-4135. doi: 10.7498/aps.59.4130
    [16] 彭建, 龙志林, 危洪清, 李乡安, 张志纯. 铁基块体非晶合金在纳米压痕过程中的蠕变行为研究. 物理学报, 2009, 58(6): 4059-4065. doi: 10.7498/aps.58.4059
    [17] 王华滔, 秦昭栋, 倪玉山, 张文. 不同晶体取向下纳米压痕的多尺度模拟. 物理学报, 2009, 58(2): 1057-1063. doi: 10.7498/aps.58.1057
    [18] 杨海波, 胡 明, 张 伟, 张绪瑞, 李德军, 王明霞. 基于纳米压痕法的多孔硅硬度及杨氏模量与微观结构关系研究. 物理学报, 2007, 56(7): 4032-4038. doi: 10.7498/aps.56.4032
    [19] 张建民, 徐可为. 纳米压痕法测量Cu的室温蠕变速率敏感指数. 物理学报, 2004, 53(8): 2439-2443. doi: 10.7498/aps.53.2439
    [20] 曾华荣, 李国荣, 殷庆瑞, 唐新桂. PZT铁电薄膜纳米尺度畴结构的扫描力显微术研究. 物理学报, 2003, 52(7): 1783-1787. doi: 10.7498/aps.52.1783
计量
  • 文章访问数:  5824
  • PDF下载量:  611
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-06-12
  • 修回日期:  2012-11-05
  • 刊出日期:  2013-03-05

/

返回文章
返回