搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

"荧光-1"实验装置物理设计

孙奇志 方东凡 刘伟 秦卫东 贾月松 赵小明 韩文辉

引用本文:
Citation:

"荧光-1"实验装置物理设计

孙奇志, 方东凡, 刘伟, 秦卫东, 贾月松, 赵小明, 韩文辉

Physical design of the "Ying-Guang 1" device

Sun Qi-Zhi, Fang Dong-Fan, Liu Wei, Qing Wei-Dong, Jia Yue-Song, Zhao Xiao-Ming, Han Wen-Hui
PDF
导出引用
  • 本文主要介绍"荧光-1"实验装置物理参数设计, 并依据半经验公式预估在实验装置上可能达到的磁化等离子体状态参数. 理论设计结果表明: "荧光-1"实验装置最大放电电流1.5 MA, 四分之一周期3 μs, 最大反向磁场4 T; 以此为实验平台, 当θ箍缩线圈内充气压力50 mTorr(D2气体)时, 形成的等离子体靶直径约为2 cm, 长度17 cm; 等离子体靶密度6.6×1016 cm-3, 温度 (Ti+Te) 约300 eV; 等离子体平均β值为0.95. 该状态参数接近磁化靶聚变所要求的等离子体靶初始状态参数.
    "Ying-Guang 1" is a multi-bank pulsed power device for investigating the formation, confinement and instability of the high temperature and high density field-reversed configuration (FRC) plasma injector for the magnetized target fusion (MTF). This paper described the physical design of the "Ying-Guang 1" device which will be constructed in 2013 at the Institute of Fluid Physics, CAEP. Theoretical results show that the peak reversed current and magnetic field of this device are 1.5 MA and 4 T respectively with the rise time of 3 μ s. Based on the semi-empirical formula developed by Tuszewski the magnetized plasma of equilibrium density 6.6×1016 cm-3 and temperature (Ti+Te) ~ 300 eV could be achieved on the "Ying-Guang 1" device when the initially filled D2 gas pressure is about 50 mTorr, and the length of the FRC separatrix is 17 cm with a radius of 2 cm. The average ratio of the thermal pressure to magnetic pressure β is about 0.95, and the magnetic field embedded in plasma is 0.5 T. From the adiabatic compression scaling laws and the corresponding ignition conditions, the formated FRC plasma target of the "Ying-Guang 1" device approaches the necessity of the MTF if the radius compression ratio of the solid metal liner were set to 10.
    • 基金项目: 中国工程物理研究院基金(批准号:2011B0402009)资助课题.
    • Funds: Project supported by the Development Foundation of China Academy of Engineering Physics (Grant No. 2011B0402009).
    [1]

    Taccetti J M, Intrator T P, Wurden G A, Zhang S Y, Aragonez R, Assmus P N, Bass C M, Carey C, deVries S A, Fienup W J, Furno I, Hsu S C, Kozar M P, Langner M C, Liang J, Maqueda R J, Martinez R A, Sanchez P G, Schoenberg K F, Scott K J, Siemon R E, Tejero E M, Trask E H, Tuszewski M, Waganaar W J, Grabowski C, Ruden E L, Degnan J H, Cavazos T, Gale D G, Sommars W 2003 Rev. Sci. Instr. 74 4314

    [2]

    Degnan J H, Amdahl D J, Brown A, Cavazos T, Coffey S K, Domonkos M T, Frese M H, Frese S D, Gale D G, Grabowski T C, Intrator T P, Kirkpatrick R C, Kiuttu G F, Lehr F M, Letterio J D, Parker J V, Peterkin R E, Roderick N F, Ruden E L, Siemon R E, Sommars W, Tucker W, Turchi P J ,Wurden G A 2008 IEEE Trans. Plas. Sci. 36 80

    [3]

    Gotchev O V, Knauer J P, Chang P Y, Jang N W, Shaupm M J, Megerhofer D D, Betti R 2009 Rev. Sci. Instr. 80 043504

    [4]

    Lynn A G, Merritt E, Gilmore M, Hsu S C, Witherspoon F D, Cassibry J T 2010 Rev. Sci. Instr. 81 10E115

    [5]

    Slutz S A, Herrmann M C, Vesey R A, Sefkow A B, Sinars D B, Rovang D C, Peterson K J, Cuneo M E 2010 Phys. Plasmas 17 056303

    [6]

    Stephen A S, Roger A V 2012 Phys. Rev. Lett. 108 025003

    [7]

    Finn J M, Sudan R N 1982 Nucl. Fusion 22 1443

    [8]

    Armstrong W T, Linford R K, Lipson J, Platts D A, Sherwood E G 1981 Phys. Fluids 24 2068

    [9]

    Siemon R E, Armstrong W T, Bartsch R R 1983 Plasma Physics and Controlled Nuclear Fusion Research (Vol. 2) (Vienna: IAEA) p283

    [10]

    Intrator T, Zhang S Y, Degnan J H, Furno I, Grabowski C, Hsu S C, Ruden E L, Sanchez P G, Taccetti J M, Tuszewski W, Waganaar W J, Wurden G A 2004 Phys. Plasmas 11 2580

    [11]

    Degnan J H, Adamson P, Amdahl D J, Delaney R, Domonkos M T, Hackett K E, Lehr F M, Ruden E L, Tucker W, White W, Wood H, Grabowski C, Brown D, Gale D, Kostora M, Parker J, Sommars W, Frese M H, Frese S D, Camacho J F, Coffey S K, Makhin V, Intrator T P, Wurden G A, Sieck P, Turchi P J, Waganaar W J, Siemon R E, Awe T J, Bauer B S, Fuelling S, Lynn A G, Roderick N F 2010 Proceedings of the 13th International conference on Megagauss generation and relative topic Suzhou, P.R. China, July 6-10, 2010 p553

    [12]

    Green T S, Newton A A 1966 Phys. Fluids 9 1386

    [13]

    Tuszewski M 1988 Nucl. Fusion 28 2033

    [14]

    Tuszewski M 1988 Phys. Fluids 31 3754

    [15]

    Steinhauer L C 2011 Phys. Plasmas 18 070501

    [16]

    Basko M M, Kemp A J, Meyer-ter-Vehn J 2000 Nucl. Fusion 40 59

  • [1]

    Taccetti J M, Intrator T P, Wurden G A, Zhang S Y, Aragonez R, Assmus P N, Bass C M, Carey C, deVries S A, Fienup W J, Furno I, Hsu S C, Kozar M P, Langner M C, Liang J, Maqueda R J, Martinez R A, Sanchez P G, Schoenberg K F, Scott K J, Siemon R E, Tejero E M, Trask E H, Tuszewski M, Waganaar W J, Grabowski C, Ruden E L, Degnan J H, Cavazos T, Gale D G, Sommars W 2003 Rev. Sci. Instr. 74 4314

    [2]

    Degnan J H, Amdahl D J, Brown A, Cavazos T, Coffey S K, Domonkos M T, Frese M H, Frese S D, Gale D G, Grabowski T C, Intrator T P, Kirkpatrick R C, Kiuttu G F, Lehr F M, Letterio J D, Parker J V, Peterkin R E, Roderick N F, Ruden E L, Siemon R E, Sommars W, Tucker W, Turchi P J ,Wurden G A 2008 IEEE Trans. Plas. Sci. 36 80

    [3]

    Gotchev O V, Knauer J P, Chang P Y, Jang N W, Shaupm M J, Megerhofer D D, Betti R 2009 Rev. Sci. Instr. 80 043504

    [4]

    Lynn A G, Merritt E, Gilmore M, Hsu S C, Witherspoon F D, Cassibry J T 2010 Rev. Sci. Instr. 81 10E115

    [5]

    Slutz S A, Herrmann M C, Vesey R A, Sefkow A B, Sinars D B, Rovang D C, Peterson K J, Cuneo M E 2010 Phys. Plasmas 17 056303

    [6]

    Stephen A S, Roger A V 2012 Phys. Rev. Lett. 108 025003

    [7]

    Finn J M, Sudan R N 1982 Nucl. Fusion 22 1443

    [8]

    Armstrong W T, Linford R K, Lipson J, Platts D A, Sherwood E G 1981 Phys. Fluids 24 2068

    [9]

    Siemon R E, Armstrong W T, Bartsch R R 1983 Plasma Physics and Controlled Nuclear Fusion Research (Vol. 2) (Vienna: IAEA) p283

    [10]

    Intrator T, Zhang S Y, Degnan J H, Furno I, Grabowski C, Hsu S C, Ruden E L, Sanchez P G, Taccetti J M, Tuszewski W, Waganaar W J, Wurden G A 2004 Phys. Plasmas 11 2580

    [11]

    Degnan J H, Adamson P, Amdahl D J, Delaney R, Domonkos M T, Hackett K E, Lehr F M, Ruden E L, Tucker W, White W, Wood H, Grabowski C, Brown D, Gale D, Kostora M, Parker J, Sommars W, Frese M H, Frese S D, Camacho J F, Coffey S K, Makhin V, Intrator T P, Wurden G A, Sieck P, Turchi P J, Waganaar W J, Siemon R E, Awe T J, Bauer B S, Fuelling S, Lynn A G, Roderick N F 2010 Proceedings of the 13th International conference on Megagauss generation and relative topic Suzhou, P.R. China, July 6-10, 2010 p553

    [12]

    Green T S, Newton A A 1966 Phys. Fluids 9 1386

    [13]

    Tuszewski M 1988 Nucl. Fusion 28 2033

    [14]

    Tuszewski M 1988 Phys. Fluids 31 3754

    [15]

    Steinhauer L C 2011 Phys. Plasmas 18 070501

    [16]

    Basko M M, Kemp A J, Meyer-ter-Vehn J 2000 Nucl. Fusion 40 59

  • [1] 陈龙, 檀聪琦, 崔作君, 段萍, 安宇豪, 陈俊宇, 周丽娜. 电子非广延分布的多离子磁化等离子体鞘层特性. 物理学报, 2024, 73(5): 055201. doi: 10.7498/aps.73.20231452
    [2] 赵佳羿, 胡鹏, 王雨林, 王金灿, 唐桧波, 胡广月. 用于激光等离子体中脉冲强磁场产生的电感耦合线圈. 物理学报, 2021, 70(16): 165202. doi: 10.7498/aps.70.20210441
    [3] 李彦霏, 李玉同, 朱保君, 袁大伟, 李芳, 张喆, 仲佳勇, 魏会冈, 裴晓星, 刘畅, 原晓霞, 赵家瑞, 韩波, 廖国前, 鲁欣, 华能, 朱宝强, 朱健强, 方智恒, 安红海, 黄秀光, 赵刚, 张杰. 强激光产生的强磁场及其对弓激波的影响. 物理学报, 2017, 66(9): 095202. doi: 10.7498/aps.66.095202
    [4] 周雯, 季珂, 陈鹤鸣. 基于平行磁控的磁化等离子体光子晶体THz波调制器. 物理学报, 2017, 66(5): 054210. doi: 10.7498/aps.66.054210
    [5] 薄勇, 赵青, 罗先刚, 范佳, 刘颖, 刘建卫. 电磁波在时变磁化等离子体信道中通信性能的实验研究. 物理学报, 2016, 65(5): 055201. doi: 10.7498/aps.65.055201
    [6] 何民卿, 董全力, 盛政明, 张杰. 激光驱动的冲击波自生磁场以及外加磁场的冲击波放大研究. 物理学报, 2015, 64(10): 105202. doi: 10.7498/aps.64.105202
    [7] 李璐璐, 张华, 杨显俊. 反场构形的传输过程. 物理学报, 2015, 64(12): 125202. doi: 10.7498/aps.64.125202
    [8] 李璐璐, 张华, 杨显俊. 反场构形的二维磁流体力学描述. 物理学报, 2014, 63(16): 165202. doi: 10.7498/aps.63.165202
    [9] 王飞, 魏兵. 电各向异性色散介质电磁散射时域有限差分分析的半解析递推卷积方法. 物理学报, 2013, 62(4): 044101. doi: 10.7498/aps.62.044101
    [10] 袁学松, 鄢扬, 刘盛纲. 有限引导磁场下相对论环形电子注色散特性的研究. 物理学报, 2011, 60(1): 014102. doi: 10.7498/aps.60.014102
    [11] 盛亮, 邱孟通, 黑东炜, 邱爱慈, 丛培天, 王亮平, 魏福利. 丝阵负载Z箍缩内爆动力学研究. 物理学报, 2011, 60(5): 055205. doi: 10.7498/aps.60.055205
    [12] 邹 秀, 刘惠平, 谷秀娥. 磁化等离子体的鞘层结构. 物理学报, 2008, 57(8): 5111-5116. doi: 10.7498/aps.57.5111
    [13] 杨利霞, 葛德彪, 魏 兵. 电各向异性色散介质电磁散射的三维递推卷积-时域有限差分方法分析. 物理学报, 2007, 56(8): 4509-4514. doi: 10.7498/aps.56.4509
    [14] 杨宏伟, 袁 洪, 陈如山, 杨 阳. 各向异性磁化等离子体的SO-FDTD算法. 物理学报, 2007, 56(3): 1443-1446. doi: 10.7498/aps.56.1443
    [15] 刘少斌, 顾长青, 周建江, 袁乃昌. 磁化等离子体光子晶体的FDTD分析. 物理学报, 2006, 55(3): 1283-1288. doi: 10.7498/aps.55.1283
    [16] 刘少斌, 莫锦军, 袁乃昌. 各向异性磁等离子体的辅助方程FDTD算法. 物理学报, 2004, 53(7): 2233-2236. doi: 10.7498/aps.53.2233
    [17] 刘少斌, 莫锦军, 袁乃昌. 各向异性磁化等离子体JEC-FDTD算法. 物理学报, 2004, 53(3): 783-787. doi: 10.7498/aps.53.783
    [18] 唐德礼, 孙爱萍, 邱孝明. 均匀磁化等离子体与雷达波相互作用的数值分析. 物理学报, 2002, 51(8): 1724-1729. doi: 10.7498/aps.51.1724
    [19] 康寿万, 蔡诗东. 磁化等离子体中逃逸电子的临界速度. 物理学报, 1980, 29(3): 311-319. doi: 10.7498/aps.29.311
    [20] 蔡诗东, 吴京生. 磁化等离子体的纵向电阻率. 物理学报, 1980, 29(2): 225-232. doi: 10.7498/aps.29.225
计量
  • 文章访问数:  5855
  • PDF下载量:  518
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-09-10
  • 修回日期:  2012-10-17
  • 刊出日期:  2013-04-05

/

返回文章
返回