搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

N2微空心阴极放电特性及其阴极溅射的PIC/MC模拟

张连珠 孟秀兰 张素 高书侠 赵国明

引用本文:
Citation:

N2微空心阴极放电特性及其阴极溅射的PIC/MC模拟

张连珠, 孟秀兰, 张素, 高书侠, 赵国明

Simulation of N2 microhollow cathode discharge and cathode sputtering by using a PIC/MC model

Zhang Lian-Zhu, Meng Xiu-Lan, Zhang Su, Gao Shu-Xia, Zhao Guo-Ming
PDF
导出引用
  • 采用两维PIC/MCC模型模拟了氮气微空心阴极放电以及轰击离子 (N2+,N+) 的钛阴极溅射. 主要计算了氮气微空心阴极放电离子 (N2+,N+) 及溅射原子Ti的行为分布, 并研究了溅射Ti 原子的热化过程. 结果表明: 在模拟条件下, 空心阴极效应是负辉区叠加的电子震荡; 在对应条件下, 微空心较传统空心放电两种离子 (N2+,N+) 密度均大两个量级, 两种离子的平均能量的分布及大小几乎相同; 在放电空间N+的密度约为N2+的1/6, 最大能量约大2倍; 在不同参数 (P, T, V)下, 轰击阴极内表面的氮离子(N2+,N+)的密度近似均匀, 其平均能量几乎相等; 从阴极溅射出的Ti原子的初始平均能量约6.8 eV, 离开阴极约0.15 mm处几乎完全被热化. 模拟结果为N2微空心阴极放电等离子体特性的认识提供了参考依据.
    The nitrogen microhollow cathode discharge and Ti cathode sputtering, bombarded by ions (N2+, N+), have been studied using a two-dimensional PIC/MCC model. The behavior of ions (N2+, N+) and sputtered atom (Ti), and the thermalization process of the sputtered atoms in a nitrogen microhollow cathode discharge are simulated. The results show that hollow cathode effect is due to electron oscillations in the overlapping negative glow under our simulation condition. The densities of ions (N2+, N+) in the microhollow cathode discharge are two orders in magnitude greater than that in the conventional hollow cathode discharge; but the distributions and sizes of the mean energy of the ions (N2+, N+) are almost the same. The density of N2+ is fivefold as much as that of N+ in the microdischarge space; however, the maximum of mean energy of the latter is twice larger than the former. For various parameters (P, T, V), the densities of ions(N2+, N+) bombarding the cathode internal surface are almost uniformly distributed, and their mean energy are almost the same. When these atoms are 0.15 mm away from the cathode. The sputtered atoms are almost thermalized completely.
    • 基金项目: 河北省自然科学基金 (批准号: A2012205072)资助的课题.
    • Funds: Project supported by the Hebei Natural Science Foundation, China (Grant No. A2012205072).
    [1]

    Xia G Q, Mao G W, Nader S 2008 Journal of Solid Rocket Technology 31 565

    [2]

    Benedikt J, Focke K, Yanguas Gil A 2006 Appl. Phys. Lett. 89 25

    [3]

    He S J, Ouyang J T, He F, Li S 2011 Physics of Plasmas 18 032102

    [4]

    Makasheva K, Munoz Serrano E, Hagelaar G, Boeuf J P, Pitchford L C 2007 Plasma Phys. Control. Fusion 49 B233

    [5]

    Mahony C M O, Gans T, Graham W G, Maguire P D, Petrović Z Lj 2008 Appl. Phys. Lett. 93 011501

    [6]

    Xia G Q, Xue W H, Chen M L 2011 Acta Phys. Sin. 60 015201 (in Chinese) [夏广庆, 薛伟华, 陈茂林 2011 物理学报 60 015201]

    [7]

    Gu X W, Meng L, Yan Y, Sun Y Q 2009 Contrib. Plasma Phys. 49 40

    [8]

    Lazzaroni C, Chabert P 2012 J. Appl. Phys. 111 053305

    [9]

    Hong Y C, Uhm H S, Yi W J 2008 Appl. Phys. Lett. 93 051504

    [10]

    Qiu L, Meng Y D, Ren Z X, Zhong S F 2006 Acta Phys. Sin. 55 5872 (in Chinese) [裘亮, 孟月东, 任兆杏, 钟少锋 2006 物理学报 55 5872]

    [11]

    Ignatkov A, Schwabedissen A, Leu G, Engemann J 2002 Presented at the 8th Int. Symp. High Pressure, Low Temperature PlasmaChemistry HAKONE VIII, Tartu, Estonia, 2002 p13

    [12]

    Miyagawa Y, Nakadate H, Tanaka M, Ikeyama M, Miyagawa S 2005 Surface & Coatings Technology 196 155

    [13]

    Gu X W, Meng L, Yan Y, Sun YQ 2009 Contrib. Plasma Phys. 49 40

    [14]

    Yu W, Zhang L Z, Wang J L 2001 J. Phys. D: Appl. Phys. 34 3349

    [15]

    Vahedi V, Dipeso G, Birdsall C K, Lieberman M A 1993 Plasma Sources Sci Technol 2 261

    [16]

    Itikawa Y 2006 J. Phys. Chem. Ref. Data. 35 31

    [17]

    Phelps A V 1991 J. Phys. Chem. Ref. Data. 20 557

    [18]

    Matsunami N, Yamamura Y, Itikawa Y, Itoh N, Kazumata Y, Miyagawa S, Morita K, Shimizu R, Tawara H 1984 At. Data Nucl. Data Tables 31 1

    [19]

    Bogaerts A, Straaten M, Gijbels R 1995 J. Appl. Phys. 77 1868

    [20]

    Bardos L, Barankova H, Lebedev Y A 2003 Surface and Coatings Technology 163-164 654

    [21]

    Baguer N, Bogaerts A, Gijbels R 2002 Spectrochimica Acta Part B 57 311

  • [1]

    Xia G Q, Mao G W, Nader S 2008 Journal of Solid Rocket Technology 31 565

    [2]

    Benedikt J, Focke K, Yanguas Gil A 2006 Appl. Phys. Lett. 89 25

    [3]

    He S J, Ouyang J T, He F, Li S 2011 Physics of Plasmas 18 032102

    [4]

    Makasheva K, Munoz Serrano E, Hagelaar G, Boeuf J P, Pitchford L C 2007 Plasma Phys. Control. Fusion 49 B233

    [5]

    Mahony C M O, Gans T, Graham W G, Maguire P D, Petrović Z Lj 2008 Appl. Phys. Lett. 93 011501

    [6]

    Xia G Q, Xue W H, Chen M L 2011 Acta Phys. Sin. 60 015201 (in Chinese) [夏广庆, 薛伟华, 陈茂林 2011 物理学报 60 015201]

    [7]

    Gu X W, Meng L, Yan Y, Sun Y Q 2009 Contrib. Plasma Phys. 49 40

    [8]

    Lazzaroni C, Chabert P 2012 J. Appl. Phys. 111 053305

    [9]

    Hong Y C, Uhm H S, Yi W J 2008 Appl. Phys. Lett. 93 051504

    [10]

    Qiu L, Meng Y D, Ren Z X, Zhong S F 2006 Acta Phys. Sin. 55 5872 (in Chinese) [裘亮, 孟月东, 任兆杏, 钟少锋 2006 物理学报 55 5872]

    [11]

    Ignatkov A, Schwabedissen A, Leu G, Engemann J 2002 Presented at the 8th Int. Symp. High Pressure, Low Temperature PlasmaChemistry HAKONE VIII, Tartu, Estonia, 2002 p13

    [12]

    Miyagawa Y, Nakadate H, Tanaka M, Ikeyama M, Miyagawa S 2005 Surface & Coatings Technology 196 155

    [13]

    Gu X W, Meng L, Yan Y, Sun YQ 2009 Contrib. Plasma Phys. 49 40

    [14]

    Yu W, Zhang L Z, Wang J L 2001 J. Phys. D: Appl. Phys. 34 3349

    [15]

    Vahedi V, Dipeso G, Birdsall C K, Lieberman M A 1993 Plasma Sources Sci Technol 2 261

    [16]

    Itikawa Y 2006 J. Phys. Chem. Ref. Data. 35 31

    [17]

    Phelps A V 1991 J. Phys. Chem. Ref. Data. 20 557

    [18]

    Matsunami N, Yamamura Y, Itikawa Y, Itoh N, Kazumata Y, Miyagawa S, Morita K, Shimizu R, Tawara H 1984 At. Data Nucl. Data Tables 31 1

    [19]

    Bogaerts A, Straaten M, Gijbels R 1995 J. Appl. Phys. 77 1868

    [20]

    Bardos L, Barankova H, Lebedev Y A 2003 Surface and Coatings Technology 163-164 654

    [21]

    Baguer N, Bogaerts A, Gijbels R 2002 Spectrochimica Acta Part B 57 311

  • [1] 佟磊, 赵明亮, 张钰如, 宋远红, 王友年. 带有射频偏压源的感性耦合Ar/O2/Cl2等离子体放电的混合模拟研究. 物理学报, 2024, 73(4): 045201. doi: 10.7498/aps.73.20231369
    [2] 赵立芬, 哈静, 王非凡, 李庆, 何寿杰. 氧气空心阴极放电模拟. 物理学报, 2022, 71(2): 025201. doi: 10.7498/aps.71.20211150
    [3] 赵立芬, 哈静, 王非凡, 李庆, 何寿杰. 氧气空心阴极放电的模拟研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211150
    [4] 何寿杰, 周佳, 渠宇霄, 张宝铭, 张雅, 李庆. 氩气空心阴极放电复杂动力学过程的模拟研究. 物理学报, 2019, 68(21): 215101. doi: 10.7498/aps.68.20190734
    [5] 陈坚, 刘志强, 郭恒, 李和平, 姜东君, 周明胜. 基于气体放电等离子体射流源的模拟离子引出实验平台物理特性. 物理学报, 2018, 67(18): 182801. doi: 10.7498/aps.67.20180919
    [6] 何寿杰, 张钊, 赵雪娜, 李庆. 微空心阴极维持辉光放电的时空特性. 物理学报, 2017, 66(5): 055101. doi: 10.7498/aps.66.055101
    [7] 何寿杰, 哈静, 刘志强, 欧阳吉庭, 何锋. 流体-亚稳态原子传输混合模型模拟空心阴极放电特性. 物理学报, 2013, 62(11): 115203. doi: 10.7498/aps.62.115203
    [8] 刘小亮, 孙少华, 曹瑜, 孙铭泽, 刘情操, 胡碧涛. 飞秒激光低压N2等离子体特性的实验研究. 物理学报, 2013, 62(4): 045201. doi: 10.7498/aps.62.045201
    [9] 何福顺, 李刘合, 李芬, 顿丹丹, 陶婵偲. 增强辉光放电等离子体离子注入的三维PIC/MC模拟. 物理学报, 2012, 61(22): 225203. doi: 10.7498/aps.61.225203
    [10] 汪宇, 李晓东, 余量, 严建华. 滑动弧低温等离子体放电特性的数值模拟研究. 物理学报, 2011, 60(3): 035203. doi: 10.7498/aps.60.035203
    [11] 杨涓, 石峰, 杨铁链, 孟志强. 电子回旋共振离子推力器放电室等离子体数值模拟. 物理学报, 2010, 59(12): 8701-8706. doi: 10.7498/aps.59.8701
    [12] 刘成森, 王德真, 刘天伟, 王艳辉. 半圆形容器等离子体源离子注入过程中离子动力学的两维PIC计算机模拟. 物理学报, 2008, 57(10): 6450-6456. doi: 10.7498/aps.57.6450
    [13] 郑飞腾, 杨中海, 金晓林. 空心阴极类火花放电初始电离过程的PIC/MCC模拟. 物理学报, 2008, 57(2): 990-995. doi: 10.7498/aps.57.990
    [14] 金晓林, 杨中海. 电子回旋共振放电的电离特性PIC/MCC模拟(Ⅱ)——数值模拟与结果讨论. 物理学报, 2006, 55(11): 5935-5941. doi: 10.7498/aps.55.5935
    [15] 周俐娜, 王新兵. 微空心阴极放电的流体模型模拟. 物理学报, 2004, 53(10): 3440-3446. doi: 10.7498/aps.53.3440
    [16] 张永辉, 江金生, 常安碧. 空心阴极等离子体电子枪研究. 物理学报, 2003, 52(7): 1676-1681. doi: 10.7498/aps.52.1676
    [17] 姚细林, 王新兵, 赖建军. 微空心阴极放电的Monte Carlo模拟研究. 物理学报, 2003, 52(6): 1450-1454. doi: 10.7498/aps.52.1450
    [18] 熊家贵, 王德武. 离子引出的二维PIC-MCC模拟. 物理学报, 2000, 49(12): 2420-2426. doi: 10.7498/aps.49.2420
    [19] 陈永洲, 陈清明, 李 军, 赖建军, 丘军林. 磁场下空心阴极氦放电过程中电子运动的计算机模拟. 物理学报, 1998, 47(10): 1665-1672. doi: 10.7498/aps.47.1665
    [20] 韩俊波, 王德真, 马腾才. 气体放电空心阴极鞘层氩离子的蒙特-卡罗模拟研究. 物理学报, 1996, 45(3): 428-435. doi: 10.7498/aps.45.428
计量
  • 文章访问数:  4815
  • PDF下载量:  705
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-07-30
  • 修回日期:  2012-10-09
  • 刊出日期:  2013-04-05

/

返回文章
返回