搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

星载极化相关型全极化微波辐射计天线交叉极化校正技术 (II) : 校正试验

陆文 严卫 艾未华 施健康

引用本文:
Citation:

星载极化相关型全极化微波辐射计天线交叉极化校正技术 (II) : 校正试验

陆文, 严卫, 艾未华, 施健康

Antenna cross-polarization correction for spaceborne polarimetric microwave correlation radiometer (II): Correction experiment

Lu Wen, Yan Wei, Ai Wei-Hua, Shi Jian-Kang
PDF
导出引用
  • 创建了地球场景数据集, 结合全极化微波辐射传输模型, 仿真了地球场景亮温. 基于自主推导的全极化天线温度方程, 通过GRASP9软件生成天线方向图, 模拟了辐射计的天线温度. 进而利用多元线性回归方法, 求取了天线交叉极化校正M矩阵, 实现了对星载极化相关型全极化微波辐射计天线交叉极化的校正. 试验结果表明: 天线温度与地球场景亮温之间具有良好的线性关系; 天线交叉极化对全极化微波辐射计正交通道亮温影响明显, 尤其以对垂直极化亮温误差的影响最为显著; 校正后各通道的天线交叉极化得到了有效的减小, 交叉极化优于-23 dB, 极化纯度大于99.5%, 采用M矩阵校正及消除天线温度中交叉极化亮温影响的方案是切实可行的. 该校正技术可以实现星载极化相关型全极化微波辐射计在轨运行后对于天线交叉极化的最终校正.
    In this paper, we simulated the earth scene brightness temperature by creating the earth scene data sets and using polarimetric microwave radiative transfer model. On the basis of the fully polarized antenna temperature equation we have derived, the radiometer antenna temperature was also simulated by generating antenna pattern through GRASP9 software. Then by using multiple linear regression method, the M matrix was calculated and the antenna cross-polarization correction for spaceborne polarimetric microwave correlation radiometer was realized. The correction results show that the antenna temperature and earth scene brightness temperature have a linear relationship. Antenna cross-polarization influences the orthogonal channels brightness temperature seriously, especially the vertical polarization brightness temperature. The antenna cross-polarization for each channel has been effectively reduced. Residual cross-polarization is better than -23 dB and the polarization purity is greater than 99.5%. Correction of using M matrix to eliminate the antenna cross-polarization is feasible. It has been proved that this technique is most appropriate for the final correction of antenna cross-polarization for the spaceborne polarimetric microwave correlation radiometer on orbit.
    • 基金项目: 国家自然科学基金 (批准号: 41076118, 41005018) 和中国气象局大气物理与大气环境重点开放实验室基金 (批准号: KDW1105) 资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 41076118, 41005018), and the foundation of CMA key laboratory for atmospheric physics and environment (Grant No. KDW1105).
    [1]

    Ulaby F T, Moore R K, Fung A K 1981 Microwave remote sensing: active and passive (Vol. 1) (Massachusetts: Addison-Wesley Publishing Company) pp229-85

    [2]

    Martine S 2004 An introduction to ocean remote sensing (Cambridge: Cambridge University Press) pp201-27

    [3]

    Gaiser P W, Twarog E M, Karen L L 2004 IEEE Trans. Geosci. Remote Sens. 42 2347

    [4]

    Plonski M, Smith C 2001 Algorithm theoretical basis document (ATBD) for the conical-scanning microwave imager/sounder (CMIS) environmental data records (EDRs) (Vol.1 17) (Lexington: AER) pp1-132

    [5]

    Hewison T J, Saunder R 1996 IEEE Trans. Geosci. Remote Sens. 34 405

    [6]

    Janssen M A, Ruf C S, Keihm S 1995 IEEE Trans. Geosci. Remote Sens. 33 138

    [7]

    Smith C K, Thompson D 2008 IGARSS Boston, MA, July 6-11, 2008 p10

    [8]

    Lu W, Yan W, Wang R, Wang Y Q 2012 Acta Phys. Sin. 61 018401 (in Chinese) [陆文, 严卫, 王蕊, 王迎强 2012 物理学报 61 018401]

    [9]

    Kim S B, Wentz F J 2008 IGARSS Boston, MA, July 6-11, 2008 pp1184-1187

    [10]

    Zhang Z Y, Lin S J 1995 Microwave radiation measurement technology and Application (Beijing: Electronic Industry Press) (in Chinese) [张祖荫, 林士杰 1995 微波辐射测量技术与应用 (北京: 电子工业出版社) ]

    [11]

    Njoku Eni G, Christensen E J, Cofield R E 1980 IEEE J. Oceanic Eng. 5 125

    [12]

    Wentz F J 1993 User's Manual SSM/I Antenna Temperature Tapes Revision 2 (Santa Rosa: Remote Sensing System) pp7–15

    [13]

    Tachi K, Arai K, Sato Y 1989 IEEE Trans. Geosci. Remote Sens. 27 177

    [14]

    Gaiser P, Purdy B 2002 Antenna design, modeling, and testing on the WindSat satellite wind direction measurement system (Washington: Naval Research Laboratory) pp39-43

    [15]

    Shi J K, Lu W, Yan W, Ai W H 2012 Acta Phys. Sin. 61 078403 (in Chinese) [施健康, 陆文, 严卫, 艾未华 2012 物理学报 61 078403]

    [16]

    Pontoppidan K 2005 GRASP9 technical description (Denmark: TICRA Engineering Consultants) pp1-11

    [17]

    Wang R 2007 MS Thesis (Nanjing: Institute of Meteorology, PLA University of Science & Technology) (in Chinese) [王蕊 2007 硕士学位论文 (南京: 解放军理工大学气象学院)]

    [18]

    Wang Z Z 2005 Ph. D. Dissertation (Beijing: Center for Space Science and Applied Research, Chinese Academy of Sciences) (in Chinese) [王振占 2005 博士学位论文 (北京: 中国科学院空间科学与应用研究中心)]

  • [1]

    Ulaby F T, Moore R K, Fung A K 1981 Microwave remote sensing: active and passive (Vol. 1) (Massachusetts: Addison-Wesley Publishing Company) pp229-85

    [2]

    Martine S 2004 An introduction to ocean remote sensing (Cambridge: Cambridge University Press) pp201-27

    [3]

    Gaiser P W, Twarog E M, Karen L L 2004 IEEE Trans. Geosci. Remote Sens. 42 2347

    [4]

    Plonski M, Smith C 2001 Algorithm theoretical basis document (ATBD) for the conical-scanning microwave imager/sounder (CMIS) environmental data records (EDRs) (Vol.1 17) (Lexington: AER) pp1-132

    [5]

    Hewison T J, Saunder R 1996 IEEE Trans. Geosci. Remote Sens. 34 405

    [6]

    Janssen M A, Ruf C S, Keihm S 1995 IEEE Trans. Geosci. Remote Sens. 33 138

    [7]

    Smith C K, Thompson D 2008 IGARSS Boston, MA, July 6-11, 2008 p10

    [8]

    Lu W, Yan W, Wang R, Wang Y Q 2012 Acta Phys. Sin. 61 018401 (in Chinese) [陆文, 严卫, 王蕊, 王迎强 2012 物理学报 61 018401]

    [9]

    Kim S B, Wentz F J 2008 IGARSS Boston, MA, July 6-11, 2008 pp1184-1187

    [10]

    Zhang Z Y, Lin S J 1995 Microwave radiation measurement technology and Application (Beijing: Electronic Industry Press) (in Chinese) [张祖荫, 林士杰 1995 微波辐射测量技术与应用 (北京: 电子工业出版社) ]

    [11]

    Njoku Eni G, Christensen E J, Cofield R E 1980 IEEE J. Oceanic Eng. 5 125

    [12]

    Wentz F J 1993 User's Manual SSM/I Antenna Temperature Tapes Revision 2 (Santa Rosa: Remote Sensing System) pp7–15

    [13]

    Tachi K, Arai K, Sato Y 1989 IEEE Trans. Geosci. Remote Sens. 27 177

    [14]

    Gaiser P, Purdy B 2002 Antenna design, modeling, and testing on the WindSat satellite wind direction measurement system (Washington: Naval Research Laboratory) pp39-43

    [15]

    Shi J K, Lu W, Yan W, Ai W H 2012 Acta Phys. Sin. 61 078403 (in Chinese) [施健康, 陆文, 严卫, 艾未华 2012 物理学报 61 078403]

    [16]

    Pontoppidan K 2005 GRASP9 technical description (Denmark: TICRA Engineering Consultants) pp1-11

    [17]

    Wang R 2007 MS Thesis (Nanjing: Institute of Meteorology, PLA University of Science & Technology) (in Chinese) [王蕊 2007 硕士学位论文 (南京: 解放军理工大学气象学院)]

    [18]

    Wang Z Z 2005 Ph. D. Dissertation (Beijing: Center for Space Science and Applied Research, Chinese Academy of Sciences) (in Chinese) [王振占 2005 博士学位论文 (北京: 中国科学院空间科学与应用研究中心)]

  • [1] 赵振宇, 刘海文, 陈智娇, 董亮, 常乐, 高萌英. 基于超材料角反射面的高增益高效率双圆极化Fabry-Perot天线设计. 物理学报, 2022, 71(4): 044101. doi: 10.7498/aps.71.20211914
    [2] 闫志巾, 施卫. 太赫兹GaAs光电导天线阵列辐射特性. 物理学报, 2021, 70(24): 248704. doi: 10.7498/aps.70.20211210
    [3] 赵振宇, 刘海文, 陈智娇, 董亮, 常乐, 高萌英. 基于超材料角反射面的高增益高效率双圆极化Fabry-Perot天线设计. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211914
    [4] 郭泽旭, 曹祥玉, 高军, 李思佳, 杨欢欢, 郝彪. 一种复合型极化转换表面及其在天线辐射散射调控中的应用. 物理学报, 2020, 69(23): 234102. doi: 10.7498/aps.69.20200797
    [5] 李唐景, 梁建刚, 李海鹏, 牛雪彬, 刘亚峤. 基于单层线-圆极化转换聚焦超表面的宽带高增益圆极化天线设计. 物理学报, 2017, 66(6): 064102. doi: 10.7498/aps.66.064102
    [6] 李唐景, 梁建刚, 李海鹏. 基于单层反射超表面的宽带圆极化高增益天线设计. 物理学报, 2016, 65(10): 104101. doi: 10.7498/aps.65.104101
    [7] 李文惠, 张介秋, 屈绍波, 沈杨, 余积宝, 范亚, 张安学. 基于极化旋转超表面的圆极化天线设计. 物理学报, 2016, 65(2): 024101. doi: 10.7498/aps.65.024101
    [8] 杜延磊, 马文韬, 杨晓峰, 刘桂红, 于暘, 李紫薇. 无云情况下L波段微波辐射计快速大气校正方法. 物理学报, 2015, 64(7): 079501. doi: 10.7498/aps.64.079501
    [9] 丛丽丽, 付强, 曹祥玉, 高军, 宋涛, 李文强, 赵一, 郑月军. 一种高增益低雷达散射截面的新型圆极化微带天线设计. 物理学报, 2015, 64(22): 224219. doi: 10.7498/aps.64.224219
    [10] 范亚, 屈绍波, 王甲富, 张介秋, 冯明德, 张安学. 基于交叉极化旋转相位梯度超表面的宽带异常反射. 物理学报, 2015, 64(18): 184101. doi: 10.7498/aps.64.184101
    [11] 张重阳, 刘阿娣, 李弘, 陈志鹏, 李斌, 杨州军, 周楚, 谢锦林, 兰涛, 刘万东, 庄革, 俞昌旋. 双极化频率调制微波反射计在J-TEXT托卡马克上的应用. 物理学报, 2014, 63(12): 125204. doi: 10.7498/aps.63.125204
    [12] 李思佳, 曹祥玉, 高军, 刘涛, 杨欢欢, 李文强. 宽带超薄完美吸波体设计及在圆极化倾斜波束天线雷达散射截面缩减中的应用研究. 物理学报, 2013, 62(12): 124101. doi: 10.7498/aps.62.124101
    [13] 陆希成, 王建国, 刘钰, 李爽, 韩峰. 基于天线辐射理论构建微波混沌腔的随机耦合模型. 物理学报, 2013, 62(7): 070504. doi: 10.7498/aps.62.070504
    [14] 孙杰, 张晓娟, 方广有. 近地面三阵子天线估计电磁波到达角和极化参数. 物理学报, 2013, 62(19): 198402. doi: 10.7498/aps.62.198402
    [15] 施健康, 陆文, 严卫, 艾未华. 星载极化相关型全极化微波辐射计天线交叉极化校正技术(I): 天线温度方程推导. 物理学报, 2013, 62(7): 078402. doi: 10.7498/aps.62.078402
    [16] 陆文, 严卫, 王蕊, 王迎强. 全极化微波辐射计姿态对观测亮温的影响及消除. 物理学报, 2012, 61(1): 018401. doi: 10.7498/aps.61.018401
    [17] 贾婉丽, 施 卫, 屈光辉, 孙小芳. GaAs光电导天线辐射太赫兹波功率的计算. 物理学报, 2008, 57(9): 5425-5428. doi: 10.7498/aps.57.5425
    [18] 雷中华, 兰明建, 汪先友, 李建杰. 遗迹引力波对宇宙微波背景辐射极化的影响. 物理学报, 2008, 57(11): 7408-7414. doi: 10.7498/aps.57.7408
    [19] 韩增富, 王均宏. 并联介质加载偶极天线脉冲辐射特性的研究. 物理学报, 2005, 54(2): 642-647. doi: 10.7498/aps.54.642
    [20] 冯克安, 蔡俊道, 蒲富恪. 天线理论中的第二类积分方程. 物理学报, 1978, 27(2): 187-202. doi: 10.7498/aps.27.187
计量
  • 文章访问数:  5436
  • PDF下载量:  651
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-06-07
  • 修回日期:  2012-11-22
  • 刊出日期:  2013-04-05

/

返回文章
返回