|
|
In掺杂氮化亚铜薄膜的电学、光学和结构特性研究 |
杜允1 2, 鲁年鹏2, 杨虎3, 叶满萍4, 李超荣3 |
1. 杭州电子科技大学信息工程学院, 杭州 310018;
2. 中国科学院物理研究所表面物理国家重点实验, 北京 100190;
3. 浙江理工大学理学院, 杭州 310018;
4. 中国计量学院光学与电子科技学院, 杭州 310018 |
Electrical, optical properties and structure characterization of In-doped copper nitride thin film |
Du Yun1 2, Lu Nian-Peng2, Yang Hu3, Ye Man-Ping4, Li Chao-Rong3 |
1. Information Engineering School, Hangzhou Dianzi University, Hangzhou 310018, China;
2. State Key Laboratory for Surface Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
3. School of Sciences, Zhejiang Sec-Tech of University, Hangzhou 310018, China;
4. College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China |
|
摘要: 采用射频磁控溅射方法, 在低功率和低温条件下利用纯氮气作为反应溅射气体制 备出不同In含量的三元氮化物CuxInyN薄膜. 研究发现In掺杂浓度对薄膜微结构、形貌、表面化学态以及光学特性有灵敏的调节作用. 光电子峰、俄歇峰、俄歇参数的化学位移变化从不同角度揭示了不同含量In掺杂引 起的原子结合情况的变化. XPS结果显示In含量小于8.2 at.%的样品形成了Cu-In-N键. 对In含量为4.6 at.%的样品进行XRD和TEM结构测试, 实验结果肯定了In原子填充到Cu3N的反ReO3结构的体心位置. 并且当In含量增至10.7 at.%时, 薄膜生长的择优取向从之前占主导地位的(001)方向转变为(111)方向. 此外, 随着In含量的增加, 薄膜的R-T曲线从指数形式变为线性. 当In含量为47.9 at.%时, 薄膜趋于大温区恒电阻率材料, 电阻温度系数TCR仅为-6/10000. 光谱测量结果显示In摻杂使得氮化亚铜掺杂薄膜的光学帯隙从间接帯隙变为直接帯隙. 由于Burstein-Moss效应, 帯隙发生蓝移, 从1.02 eV 到2.51 eV, 实现了帯隙连续可调.
关键词:
三元氮化物
薄膜
光学特性
氮化亚铜
|
|
Abstract: Thin films of ternary compounds CuxInyN were grown on Si (100) wafers by RF magnetron cosputtering at a low temperature, low power and pure N2 environment. The effect of In incorporation on the structure and physical properties of copper nitride was obvious, which was evaluated by characterizing the film chemical bonding state, structure, electrical and optical properties. In XPS, shift of binding energy, Auger peak and Auger chemical parameters all reflected the chemical changes in the environment. For samples with In content below 8.2 at.%, either the BE increasing of Cu 2p3/2 and In 3d5/2 or the decreasing of N1s could mainly contribute to the Cu-In-N bond formation. For the Cux InyN sample with 4.6% In, indium atoms were consistently confirmed to be incorporated into the body center of Cu3N anti-ReO3 structure as shown by XRD and TEM. The strong (001) preferred orientation of copper nitride crystalline phase was kept predominant in the films until the In content goes up to 10.8 at.%, the texture changed to (111) orientation. The R-T curves of CuxInyN films changed from typical exponential to linear with increasing In. Near constant electrical resistivity in a large temperature range with small TCR of -6/10000 was investigated in the CuxInyN sample with 47.9 at.% In. Moreover, the optical band gap, due to Burstein-Moss effect, was investigated to enhance from 1.02 to 2.51 eV with the In content increasing from 0% to 26.53%, accompanied with band-gap transition from direct to indirect.
Keywords:
ternary nitride
thin film
optical properties
copper nitride
|
收稿日期: 2013-03-09
|
|
基金: 国家自然科学基金(批准号: 10904165, 51172272, 21103155)和国家重点基础研究发展计划(973计划) (批准号: 2012CB933002)资助的课题. |
References
[1] | Asano M, Umeda K, Tasaki A 1990 Jpn. J. Appl. Phys. 29 1985
|
[2] | Maruyama T, Morishita T 1996 Appl Phys. Lett. 69 890
|
[3] | Nosaka T, Yoshitake M, Okamoto A, Ogawa S and Nakayama Y 2001 Appl. Surf. Sci. 169 358
|
[4] | Maya L 1993 Mater. Res. Soc. Symp. Proc. 282 203
|
[5] | Maya L 1993 J. Vac. Sci. Technol. A11 604
|
[6] | Cremer R, Witthaut M, Neuschutz D, Trappe C, Laurenzis M, Winkle O, Kurz H 2000 Mikrochim. Acta 133 299
|
[7] | Navio C, Alvarez J, Capitan M J, Camarero J, Miranda R 2009 Appl. Phys. Lett. 94 263112
|
[8] | Navio C, Capitan M J, Alvarez J, Yndurain F, Miranda R 2007 Phys. Rev. B 76 085105
|
[9] | Borsa D M, Grachev S, Presura C, Boerma D O 2002 Appl. Phys. Lett. 80 1823
|
[10] | Maruyama T, Morishita T 1995 J. Appl. Phys. 78 4104
|
[11] | Liu Z Q, Wang W J, Wang T M, Chao S and Zheng S K 1998 Thin Solid Films 325 55
|
[12] | Kim K J, Kim J H, Kang J H 2001 J. Cryst. Growth 222 767
|
[13] | Du Y, Ji A L, Ma L B, Wang Y Q, Cao Z X 2005 J. Cryst. Growth 280 490
|
[14] | Yue G H, Yan P X, Wang J 2005 J. Cryst. Growth 274 464
|
[15] | Pierson J F 2002 Vacuum 66 59
|
[16] | Nosaka T, Yoshitake M, Okamoto A, Ogawa S, Nakayama Y 1999 Thin Solid Films 348 8
|
[17] | Ghosh S, Singha F, Choudharya D, Avasthia D K, Ganesanb V, Shahb P, Gupta A 2001 Surf. Coat. Tech. 142 1034
|
[18] | Mikula M, Búc D, Pinčík E 2001 Acta Physica Slovaca 51 35
|
[19] | Ji A L, Huang R, Du Y, Li C R, Wang Y Q, Cao Z X 2006 J. Cryst. Growth 95 79
|
[20] | Zachwieja U, Jacobs H 1990 J. Less-Common Met. 161 175
|
[21] | Juza R, Rabenau A, Anorg Z 1956 Zeitschrift für anorganische und allgemeine Chemie Chem. 285 212
|
[22] | Wang D Y, Nakamine N, Hayashi Y 1998 J. Vac. Sci. Technol. A16 2084
|
[23] | Borsa D M, Boerma D O 2004 Surf. Sci. 548 95
|
[24] | Moreno-Armenta M G, Martínez-Ruiz A, Takeuchi N 2004 Solid State Sci. rr6 9
|
[25] | Cui X F, Soon A, Phillips A E, Zheng R K, Liu Z W, Delly B, Ringer S P, Stampfl C 2012 J. Magnetism and Magnetic Mater. 324 19
|
[26] | Moreno-Armenta M G, Lopez W, Takeuchi N 2007 Solid State Sci. 9 166
|
[27] | Gulo F, Simon A, Kohler J, Kremer R K 2004 Agew. Chem. Int. Ed. 43 2032
|
[28] | Zachwiecha U, Jacobs H 1991 J. Less-Common Met. 170 185
|
[29] | Blucher J, Bang K 1989 Mater. Sci. Eng. A117 L1
|
[30] | Hayashi Y, Ishikawa T, Shimokawa D 2002 J. Alloys Compd. 330-332 348
|
[31] | Pierson J F, Horwat D 2008 Scr. Mater. 58 568
|
[32] | Gao L, Ji A L, Zhang W B, Cao Z X 2011 J. Cryst. Growth 321 157
|
[33] | Ji A L, Du Y, Lei G, Cao Z X 2010 Phys. Status Solidi A 207 2769
|
[34] | Davydov V Y, Klochikhin A A, Seisyan R P, Emtsev VV, Ivanov S V, Bechstedt F, Furthmüller J, Harima H, Mudryi A V, Aderhold J, Semchinova O, Graul J 2002 Phys. Status Solidi B 229 R1
|
[35] | Wu J, Walukiewicz W, Yu K M, Ager III J W, Haller E E, Lu H, Schaff W J, Saito Y, Nanishi Y 2002 Appl. Phys. Lett. 80 3967
|
[36] | Arnaudov B, Paskova T, Paskov P P, Magnusson B, Valcheva E, Monemar B, Lu H, Schaff W J, Amano H, Akasaki I 2004 Phys. Rev. B 69 115216
|
[37] | Gwo S, Wu C L, Shen C H, Chang W H, Hsu T M, Wang J S, Hsu J T 2004 Appl. Phys. Lett. 84 3765
|
[38] | Klochikhin A A, Davydov V Y, Emtsev V V, Sakharov A V, Kapitonov V A, Andreev B A, Lu H, Schaff W J 2005 Phys. Rev. B 71 195207
|
[39] | Ahn H, Shen C H, Wu C L, Gwo S 2005 Appl. Phys. Lett. 86 201905
|
[40] | (in Chinese) [汤晨光, 陈涌海, 王占国 2009 物理学报 58 3416]
|
[41] | (in Chinese) [叶凡, 蔡兴民, 王晓明 2007 物理学报 56 2342]
|
[42] | Ji A L, Du Y, Li C R, Cao Z X 2006 Appl. Phys. Lett. 89 252
|
[43] | Du Y, Huang R, Song R, Ma L B, Chen L, Li C R, Cao Z X 2007 J. Mater. Res. 22 3052
|
[44] | (in Chinese) [吴正龙 2009 现代仪器 1 58]
|
[45] | Mikula M, Ceppan M, Kindernay J, Buc D 1999 Czech. J. Phys. 49 393
|
[46] | Wu J, Walukiewicz W, Shan W, Yu K M, Ager J W, Haller E E, Hai L, Schaff J W 2002 Phys. Rev. B 66 201403
|
[1]
|
武振华, 李华, 严亮星, 刘炳灿, 田强. 分数维方法研究GaAs薄膜中的极化子[J]. 物理学报, 2013, 62(9): 097302.
|
[2]
|
彭娜娜, 霍燕燕, 周侃, 贾鑫, 潘佳, 孙真荣, 贾天卿. 飞秒激光诱导自组织纳米周期结构及其光学特性的研究进展[J]. 物理学报, 2013, 62(9): 094201.
|
[3]
|
周广宏, 潘旋, 朱雨富. BiFeO3/Ni81Fe19磁性双层膜中的交换偏置及其热稳定性研究[J]. 物理学报, 2013, 62(9): 097501.
|
[4]
|
韩亮, 刘德连, 陈仙, 赵玉清. 氮化铬过渡层对四面体非晶碳薄膜在高速钢基底上附着特性影响的研究[J]. 物理学报, 2013, 62(9): 096802.
|
[5]
|
宗双飞, 沈祥, 徐铁峰, 陈昱, 王国祥, 陈芬, 李军, 林常规, 聂秋华. Ge20Sb15Se65薄膜的热致光学特性变化研究[J]. 物理学报, 2013, 62(9): 096801.
|
[6]
|
吴渊渊, 郑新和, 王海啸, 甘兴源, 文瑜, 王乃明, 王建峰, 杨辉. 高质量InGaN的等离子体辅助分子束外延生长和In的反常并入行为[J]. 物理学报, 2013, 62(8): 086101.
|
[7]
|
徐韵, 李云鹏, 金璐, 马向阳, 杨德仁. 脉冲激光沉积法制备的ZnO薄膜的低阈值电抽运紫外随机激射[J]. 物理学报, 2013, 62(8): 084207.
|
[8]
|
李宇波, 王骁, 戴庭舸, 袁广中, 杨杭生. 第一性原理计算研究立方氮化硼空位的电学和光学特性[J]. 物理学报, 2013, 62(7): 074201.
|
[9]
|
刘芳芳, 张力, 何青. Cu(In, Ga)Se2 薄膜在共蒸发"三步法"中的相变过程[J]. 物理学报, 2013, 62(7): 077201.
|
[10]
|
喻利花, 马冰洋, 曹峻, 许俊华. (Zr,V)N复合膜的结构、力学性能及摩擦性能研究[J]. 物理学报, 2013, 62(7): 076202.
|
[11]
|
李红霞, 陈雪平, 陈琪, 毛启楠, 席俊华, 季振国. 下电极对ZnO薄膜电阻开关特性的影响[J]. 物理学报, 2013, 62(7): 077202.
|
[12]
|
李帅帅, 梁朝旭, 王雪霞, 李延辉, 宋淑梅, 辛艳青, 杨田林. 高迁移率非晶铟镓锌氧化物薄膜晶体管的制备与特性研究[J]. 物理学报, 2013, 62(7): 077302.
|
[13]
|
甘平, 辜敏, 卿胜兰, 鲜晓东. Te/TeO2-SiO2复合薄膜的吸收和非线性光学特性研究[J]. 物理学报, 2013, 62(7): 078101.
|
[14]
|
张艳, 王增梅, 陈云飞, 郭新立, 孙伟, 袁国亮, 殷江, 刘治国. 0.5Ba(Ti0.8Zr0.2)O3-0.5(Ba0.7Ca0.3)TiO3压电薄膜的摩擦、磨损性能[J]. 物理学报, 2013, 62(6): 066802.
|
[15]
|
文娟辉, 杨琼, 曹觉先, 周益春. 铁电薄膜漏电流的应变调控[J]. 物理学报, 2013, 62(6): 067701.
|
|
|
|