搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微平行管道内Jeffrey流体的非定常电渗流动

刘全生 杨联贵 苏洁

引用本文:
Citation:

微平行管道内Jeffrey流体的非定常电渗流动

刘全生, 杨联贵, 苏洁

Transient electroosmotic flow of general Jeffrey fluid between two micro-parallel plates

Liu Quan-Sheng, Yang Lian-Gui, Su Jie
PDF
导出引用
  • 研究了微平行管道内线性黏弹性流体的非定常电渗流动, 其中线性黏弹性流体的本构关系是由Jeffrey流体模型来描述的. 利用Laplace变换法, 求解了线性化的Poisson-Boltzmann方程、 非定常的柯西动量方程和Jeffrey流体本构方程, 给出了黏弹性Jeffrey流体电渗速度的解析表达式, 分析了无量纲弛豫时间λ1和滞后时间λ2对速度剖面的影响. 发现滞后时间为零时, 弛豫时间越小, 速度剖面图越接近牛顿流体的速度剖面图; 随着弛豫时间和滞后时间的增加, 速度振幅也变得越来越大, 随着时间的增加, 速度逐渐趋于恒定.
    In this study, analytical solutions are presented for the unsteady electroosmotic flow of linear viscoelastic fluid between micro-parallel plates. The linear viscoelastic fluid used here is described by the general Jeffrey model. Using Laplace transform method, the solution involves analytically solving the linearized Poisson-Boltzmann equation, together with the Cauchy momentum equation and the general Jeffrey constitutive equation. By numerical computations, the influences of the dimensionless relaxation time λ1 and retardation time λ2 on velocity profile are presented. In addition, we find that when the retardation time is zero, the smaller the relaxation time, the more close to the Newtonian fluid velocity profile the velocity profile is. With the increases of the relaxation time and the retardation time, the velocity amplitude also becomes bigger and bigger. As time goes by, the velocity tends to be stable gradually.
    • 基金项目: 国家自然科学基金(批准号: 11062005, 11202092); 非线性力学国家重点实验室开放基金、 内蒙古自治区高等学校青年科技英才支持计划(批准号: NJYT-13-A02); 内蒙古自治区自然科学基金(批准号: 2010BS0107, 2012MS0107); 内蒙古大学学科带头人科研启动基金(批准号: Z20080211)和 内蒙古自治区自然科学基金重点项目(批准号: 2009ZD01); 内蒙古自治区研究生教育创新计划项目和内蒙古大学提升综合实力项目(批准号: 1402020201)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11062005, 11202092), Opening Fund of State Key Laboratory of Nonlinear Mechanics, the Program for Young Talents of Science and Technology in Universities of Inner Mongolia Auton Omous Region of China (Grant No. NJYT-13-A02), the Natural Science Foundation of Inner Mongolia, China (Grant Nos. 2010BS0107, 2012MS0107), the Research Start up Fund for Excellent Talents at Inner Mongolia University, China (Grant No. Z20080211), the Natural Science Key Fund of Inner Mongolia, China (Grant No 2009ZD01), the Innovative programs funded projects of Postgraduate Education in Inner Mongolia Autonomous Region of China, and the Inner Mongolia University of enhancing the comprehensive strength funding, China (Grant No. 1402020201).
    [1]

    Stone H A, Stroock A D, Ajdari A 2004 Ann. Rev. Fluid Mech. 36 381

    [2]

    Bayraktar T, Pidugu S B 2006 Int. J. Heat Mass Trans. 49 815

    [3]

    Squires T M, Quake S R 2005 Rev. Mod. Phys. 77 977

    [4]

    Hunter R J 1981 Zeta Potential in Colloid Science (New York: Academic Press) p15

    [5]

    Levine S, Marriott J R, Neale G, Epstein N 1975 J. Colloid Interface Sci. 52 136

    [6]

    Tsao H K 2000 J. Colloid Interface Sci. 225 247

    [7]

    Hsu J P, Kao C Y, Tseng S J, Chen C J 2002 J. Colloid Interface Sci. 248 176

    [8]

    Yang C, Li D, Masliyah J H 1998 Int. J. Heat Mass Transfer 41 4229

    [9]

    Bianchi F, Ferrigno R, Girault H H 2000 Anal. Chem. 72 1987

    [10]

    Wang C Y, Liu Y H, Chang C C 2008 Phys. Fluids 20 063105

    [11]

    Dutta P, Beskok A 2001 Anal. Chem. 73 5097

    [12]

    Keh H J, Tseng H C 2001 J. Colloid Interface Sci. 242 450

    [13]

    Kang Y J, Yang C, Huang X Y 2002 Int. J. Eng. Sci. 40 2203

    [14]

    Wang X M, Chen B, Wu J K 2007 Phys. Fluids 19 127101

    [15]

    Jian Y J, Yang L G, Liu Q S 2010 Phys. Fluids 22 042001

    [16]

    Das S, Chakraborty S 2006 Anal. Chim. Acta 559 15

    [17]

    Vasu N, De S 2010 Colloids and Surfaces A: Physicochem. Eng. Aspects 368 44

    [18]

    Tang G H, Li X F, He Y L, Tao W Q 2009 J. Non-Newtonian Fluid Mech. 157 133

    [19]

    Wang R J, Lin J Z, Li Z H 2005 Binmedical Microdevices 7 131

    [20]

    Zhang K, Lin J Z, Li Z H 2006 Appl. Math. Mech. (English Edition) 27 575

    [21]

    Lin J Z, Zhang K, Li H J 2006 Chin. Phys. 15 2688

    [22]

    Liu Q S, Jian Y J, Yang L G 2011 J. Non-Newtonian Fluid Mech.166 478

    [23]

    Chang L, Jian Y J 2012 Acta Phys. Sin. 61 124702 (in Chinese) [长龙, 菅永军 2012 物理学报 61 124702]

    [24]

    Jian Y J, Liu Q S, Yang L G 2011 J. Non-Newtonian Fluid Mech. 166 1304

    [25]

    Liu Q S, Jian Y J, Yang L G 2011 Phys. Fluids 23 102001

    [26]

    Jian Y J, Liu Q S, Duan H Z, Chang L, Yang L G 2011 The Sixth International Conference on Fluid Mechanics (ICFM6) Guang Zhou, June 30-July 3, 2011 p616

    [27]

    Deng S Y, Jian Y J, Bi Y H, Chang L, Wang H J, Liu Q S 2012 Mech. Res. Commun. 39 9

    [28]

    Jiang H Y, Li S S, Hou Z X, Ren Y K, Sun Y J 2011 Acta Phys. Sin. 60 020702 (in Chinese) [姜洪源, 李姗姗, 侯珍秀, 任玉坤, 孙永军 2011物理学报 60 020702]

  • [1]

    Stone H A, Stroock A D, Ajdari A 2004 Ann. Rev. Fluid Mech. 36 381

    [2]

    Bayraktar T, Pidugu S B 2006 Int. J. Heat Mass Trans. 49 815

    [3]

    Squires T M, Quake S R 2005 Rev. Mod. Phys. 77 977

    [4]

    Hunter R J 1981 Zeta Potential in Colloid Science (New York: Academic Press) p15

    [5]

    Levine S, Marriott J R, Neale G, Epstein N 1975 J. Colloid Interface Sci. 52 136

    [6]

    Tsao H K 2000 J. Colloid Interface Sci. 225 247

    [7]

    Hsu J P, Kao C Y, Tseng S J, Chen C J 2002 J. Colloid Interface Sci. 248 176

    [8]

    Yang C, Li D, Masliyah J H 1998 Int. J. Heat Mass Transfer 41 4229

    [9]

    Bianchi F, Ferrigno R, Girault H H 2000 Anal. Chem. 72 1987

    [10]

    Wang C Y, Liu Y H, Chang C C 2008 Phys. Fluids 20 063105

    [11]

    Dutta P, Beskok A 2001 Anal. Chem. 73 5097

    [12]

    Keh H J, Tseng H C 2001 J. Colloid Interface Sci. 242 450

    [13]

    Kang Y J, Yang C, Huang X Y 2002 Int. J. Eng. Sci. 40 2203

    [14]

    Wang X M, Chen B, Wu J K 2007 Phys. Fluids 19 127101

    [15]

    Jian Y J, Yang L G, Liu Q S 2010 Phys. Fluids 22 042001

    [16]

    Das S, Chakraborty S 2006 Anal. Chim. Acta 559 15

    [17]

    Vasu N, De S 2010 Colloids and Surfaces A: Physicochem. Eng. Aspects 368 44

    [18]

    Tang G H, Li X F, He Y L, Tao W Q 2009 J. Non-Newtonian Fluid Mech. 157 133

    [19]

    Wang R J, Lin J Z, Li Z H 2005 Binmedical Microdevices 7 131

    [20]

    Zhang K, Lin J Z, Li Z H 2006 Appl. Math. Mech. (English Edition) 27 575

    [21]

    Lin J Z, Zhang K, Li H J 2006 Chin. Phys. 15 2688

    [22]

    Liu Q S, Jian Y J, Yang L G 2011 J. Non-Newtonian Fluid Mech.166 478

    [23]

    Chang L, Jian Y J 2012 Acta Phys. Sin. 61 124702 (in Chinese) [长龙, 菅永军 2012 物理学报 61 124702]

    [24]

    Jian Y J, Liu Q S, Yang L G 2011 J. Non-Newtonian Fluid Mech. 166 1304

    [25]

    Liu Q S, Jian Y J, Yang L G 2011 Phys. Fluids 23 102001

    [26]

    Jian Y J, Liu Q S, Duan H Z, Chang L, Yang L G 2011 The Sixth International Conference on Fluid Mechanics (ICFM6) Guang Zhou, June 30-July 3, 2011 p616

    [27]

    Deng S Y, Jian Y J, Bi Y H, Chang L, Wang H J, Liu Q S 2012 Mech. Res. Commun. 39 9

    [28]

    Jiang H Y, Li S S, Hou Z X, Ren Y K, Sun Y J 2011 Acta Phys. Sin. 60 020702 (in Chinese) [姜洪源, 李姗姗, 侯珍秀, 任玉坤, 孙永军 2011物理学报 60 020702]

  • [1] 解奕晨, 庄晓如, 岳思君, 李翔, 余鹏, 鲁春. HFE-7100平行微通道流动沸腾实验. 物理学报, 2024, 73(5): 054401. doi: 10.7498/aps.73.20231415
    [2] 慕江勇, 崔继峰, 陈小刚, 赵毅康, 田祎琳, 于欣如, 袁满玉. 微通道中一类生物流体在高Zeta势下的电渗流及传热特性. 物理学报, 2024, 73(6): 064701. doi: 10.7498/aps.73.20231685
    [3] 张天鸽, 任美蓉, 崔继峰, 陈小刚, 王怡丹. 变截面微管道中高zeta势下幂律流体的旋转电渗滑移流动. 物理学报, 2022, 71(13): 134701. doi: 10.7498/aps.71.20212327
    [4] 金康, 经光银. 双电层相互作用下主动粒子系统的压强. 物理学报, 2019, 68(17): 170501. doi: 10.7498/aps.68.20190435
    [5] 陆昌根, 沈露予. 前缘曲率对三维边界层内被激发出非定常横流模态的影响研究. 物理学报, 2018, 67(21): 214702. doi: 10.7498/aps.67.20181343
    [6] 梁定康, 陈义豪, 徐威, 吉新村, 童祎, 吴国栋. 基于蛋清栅介质的超低压双电层薄膜晶体管. 物理学报, 2018, 67(23): 237302. doi: 10.7498/aps.67.20181539
    [7] 陈茂林, 夏广庆, 魏延明, 于洋, 孙安邦, 毛根旺. 电动帆平行双导线鞘层特性与受力分析. 物理学报, 2016, 65(20): 209601. doi: 10.7498/aps.65.209601
    [8] 段娟, 陈耀钦, 朱庆勇. 微扩张管道内幂律流体非定常电渗流动. 物理学报, 2016, 65(3): 034702. doi: 10.7498/aps.65.034702
    [9] 姜玉婷, 齐海涛. 微平行管道内Eyring流体的电渗滑移流动. 物理学报, 2015, 64(17): 174702. doi: 10.7498/aps.64.174702
    [10] 郭文昊, 肖惠, 门传玲. SiO2固态电解质中的质子特性对氧化物双电层薄膜晶体管性能的影响. 物理学报, 2015, 64(7): 077302. doi: 10.7498/aps.64.077302
    [11] 雷鹏飞, 张家忠, 王琢璞, 陈嘉辉. 非定常瞬态流动过程中的Lagrangian拟序结构与物质输运作用. 物理学报, 2014, 63(8): 084702. doi: 10.7498/aps.63.084702
    [12] 侯立凯, 任玉坤, 姜洪源. 表面镀金SU-8微柱的低频电动旋转特征. 物理学报, 2013, 62(20): 200702. doi: 10.7498/aps.62.200702
    [13] 高莹莹, 何枫, 沈孟育. 非定常动态演化伴随优化设计方法. 物理学报, 2012, 61(20): 200206. doi: 10.7498/aps.61.200206
    [14] 殷丽梅, 张伟刚, 薛晓琳, 白志勇, 魏石磊. 飞秒激光刻蚀非平行壁光纤微腔Mach-Zehnder干涉仪特性及其流体传感研究. 物理学报, 2012, 61(17): 170701. doi: 10.7498/aps.61.170701
    [15] 长龙, 菅永军. 平行板微管道间Maxwell流体的高Zeta势周期电渗流动. 物理学报, 2012, 61(12): 124702. doi: 10.7498/aps.61.124702
    [16] 姜洪源, 李姗姗, 侯珍秀, 任玉坤, 孙永军. 非对称电极表面微观形貌对交流电渗流速的影响. 物理学报, 2011, 60(2): 020702. doi: 10.7498/aps.60.020702
    [17] 姜洪源, 任玉坤, 陶冶. 微系统中转矩及电渗流作用下的微粒子电动旋转操控. 物理学报, 2011, 60(1): 010701. doi: 10.7498/aps.60.010701
    [18] 杨 涛, 何冬慧, 张磬兰, 马红孺. 电解液中带电平板与带电胶体球之间的有效相互作用. 物理学报, 2005, 54(12): 5937-5942. doi: 10.7498/aps.54.5937
    [19] 蒋亦民. 关于色散流体的介电方程. 物理学报, 1997, 46(7): 1332-1337. doi: 10.7498/aps.46.1332
    [20] 江体乾. 关于非牛顿型流体边界层的研究. 物理学报, 1962, 18(4): 224-226. doi: 10.7498/aps.18.224
计量
  • 文章访问数:  5008
  • PDF下载量:  393
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-03-15
  • 修回日期:  2013-03-28
  • 刊出日期:  2013-07-05

/

返回文章
返回