搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于电化学与热能的耦合关系演算聚合物锂离子动力电池的温度状态及分布

汤依伟 贾明 程昀 张凯 张红亮 李劼

引用本文:
Citation:

基于电化学与热能的耦合关系演算聚合物锂离子动力电池的温度状态及分布

汤依伟, 贾明, 程昀, 张凯, 张红亮, 李劼

Estimation of temperature distribution of the polymer lithium ion power battery based on the coupling relationship between electrochemistry and heat

Tang Yi-Wei, Jia Ming, Cheng Yun, Zhang Kai, Zhang Hong-Liang, Li Jie
PDF
导出引用
  • 基于电化学-热耦合模型研究聚合物锂离子动力电池放电过程热行为, 分析了放电倍率、冷却条件对电池放电过程的温度变化及分布的影响规律. 结果表明: 3C放电时, 模型计算结果与实测结果的平均偏差为0.57 K, 方差为0.15, 说明模型准确度较高. 电芯的平均生热率在整个放电过程中呈现出增加的趋势, 初期和末期增长较快. 大倍率放电时, 与电流密度的平方呈正比的不可逆热所占的比重较大, 小倍率放电时, 电化学反应可逆热占主导. 改善冷却条件能降低电池放电过程的平均温度, 对流传热过程的表面传热系数为5 W/(m2·K), 1 C, 3 C, 5 C放电结束时, 电芯的平均温升为分别为6.46 K, 17.67 K, 27.53 K, 当对流传热过程的表面传热系数增加至25 W/(m2·K)时, 温升比自然对流条件下相同倍率放电时的温度分别降低了2.91 K, 4.68 K, 5.62 K, 但电芯温度分布的不一致性也会加剧.
    To understand the thermal effect of polymer Li-ion cells during the discharge process, an electrochemical thermal coupling model was established to investigate the thermal behavior of the cell. The average deviation and variance between the modeling results and the experimental data at 3C discharge rate were 0.57 K and 0.15, thus it was concluded that the modeling results agreed well with the experimental data. Also, the model is used to analyze the temperature distribution affected by discharge rate and cooling condition. The average heat production rate of the cells shows an increasing trend throughout the discharge process; it is increased significantly at both the beginning and the end of discharge. At a high discharge current, the irreversible heating which is proportional to the square of the current density, is the major heat generation source inside the battery. At a low discharge current, the heat production rate is dominated by reversible entropic heat. Improving cooling temperature could lower the average temperature during the discharge process. When the heat coefficient is 5 W/(m2·K), the average temperature rises of the battery cells are 6.46 K, 17.67 K, 27.53 K for 1C, 3C, 5C discharge rates respectively. If the heat coefficient increases to 25 W/(m2·K), the average temperatures of the battery cells are reduced by 2.91 K, 4.68 K, 5.62 K for 1C, 3C, 5C discharge rates, respectively, but the inner temperature difference would be increased.
    • 基金项目: 国家自然科学基金 (批准号: 51204211);中国博士后科学基金(批准号: 2012M521543) 和高等学校博士学科点专项科研基金 (批准号: 20120162120089)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51204211), the China Postdoctoral Science Foundation (Grant No. 2012M521543), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120162120089).
    [1]

    Li J, Yang C Z, Zhang X G, Zhang J, Xia B J 2009 Acta Phys. Sin. 58 6573 (in Chinese) [李佳, 杨传铮, 张熙贵, 张建, 夏保佳 2009 物理学报 58 6573]

    [2]

    Hu G J, Ouyang C Y 2010 Acta Phys. Sin. 59 5863 (in Chinese) [胡国进, 欧阳楚英 2010 物理学报 59 5863]

    [3]

    Bernardi D, Powlikowski E, Newman J 1985 J. Electrochem. Soc. 132 5

    [4]

    Al-Hallaj S, Selman J R 2002 J. Power Source 110 341

    [5]

    Wu M S, Liu K H, Wang Y Y, Wan C C 2002 J. Power Source. 109 160

    [6]

    Jeon D H, Baek S M 2011 Energy Conversion and Management 52 2973

    [7]

    Lin C T, Li T, Chen Q S 2010 Acta Armamentarii. 31 88 (in Chinese) [林成涛, 李腾, 陈全世 2010 兵工学报 31 88]

    [8]

    Chen S C, Wan C C, Wang Y Y 2005 J. Power Source. 140 111

    [9]

    Ghosh D, Maguire P D, Zhu D X 2009 SAE World Congress Detroit, Michigan, USA, April 20-23, 2009 p1386

    [10]

    Ghosh D, King K, Schwenmin B, Zhu D 2010 SAE World Congress Detroit, Michigan, USA, April 13-15, 2010 p1080

    [11]

    Ma Y, Teng H, Thelliez M 2010 Ghosh D, King K, Schwenmin B, Zhu D 2010 SAE World Congress Detroit, Michigan, USA, April 13-15, 2010 p2204

    [12]

    Kumaresan K, Sikha G, White R E 2008 J. Electrochem. Soc. 155 A164

    [13]

    Gu W B, Wang C Y 2000 J. Electrochem. Soc. 147 2910

    [14]

    Gerver R E, Meyers J P 2011 J. Electrochem. Soc. 158 A835

    [15]

    Doyle M, Newman J 1995 Electrochimica Acta. 40 2191

    [16]

    Nyman A, Zavalis T G, Elger R, Behm M, Lindbergh G 2010 J. Electrochem. Soc. 157 A1236

    [17]

    Smith K, Wang C Y 2006 J. Power Source. 160 662

    [18]

    Jin W R, Lu S G, Pang J 2011 Chinese journal of Inorganic Chemistry 27 1675 (in Chinese) [靳尉仁, 卢世刚, 庞静 2011 无机化学学报 27 1675]

    [19]

    Pesaran A A, Burch S D, Keyser M 1999 4th Vehicle Thermal Management Systems Conference and Exhibition London, UK, May 24–27

    [20]

    Che D L 2009 Master Dissertation (Wuhan: Wuhan University of technology) (in Chinese) [车杜兰 2009 硕士学位论文 (武汉: 武汉理工大学)]

    [21]

    Li W C, Lu S G 2010 The Chinese Journal of Nonferrous Metals 22 1156 (in Chinese) [李文成, 卢世刚 2010 中国有色金属学报 22 1156]

    [22]

    Yang K, An J J, Chen S 2010 J. Them anal Calorim. 99 515

    [23]

    Al-Hallaj S, Maleki H, Hong J S, Selman J R 1999 J. Power Source 83 1

  • [1]

    Li J, Yang C Z, Zhang X G, Zhang J, Xia B J 2009 Acta Phys. Sin. 58 6573 (in Chinese) [李佳, 杨传铮, 张熙贵, 张建, 夏保佳 2009 物理学报 58 6573]

    [2]

    Hu G J, Ouyang C Y 2010 Acta Phys. Sin. 59 5863 (in Chinese) [胡国进, 欧阳楚英 2010 物理学报 59 5863]

    [3]

    Bernardi D, Powlikowski E, Newman J 1985 J. Electrochem. Soc. 132 5

    [4]

    Al-Hallaj S, Selman J R 2002 J. Power Source 110 341

    [5]

    Wu M S, Liu K H, Wang Y Y, Wan C C 2002 J. Power Source. 109 160

    [6]

    Jeon D H, Baek S M 2011 Energy Conversion and Management 52 2973

    [7]

    Lin C T, Li T, Chen Q S 2010 Acta Armamentarii. 31 88 (in Chinese) [林成涛, 李腾, 陈全世 2010 兵工学报 31 88]

    [8]

    Chen S C, Wan C C, Wang Y Y 2005 J. Power Source. 140 111

    [9]

    Ghosh D, Maguire P D, Zhu D X 2009 SAE World Congress Detroit, Michigan, USA, April 20-23, 2009 p1386

    [10]

    Ghosh D, King K, Schwenmin B, Zhu D 2010 SAE World Congress Detroit, Michigan, USA, April 13-15, 2010 p1080

    [11]

    Ma Y, Teng H, Thelliez M 2010 Ghosh D, King K, Schwenmin B, Zhu D 2010 SAE World Congress Detroit, Michigan, USA, April 13-15, 2010 p2204

    [12]

    Kumaresan K, Sikha G, White R E 2008 J. Electrochem. Soc. 155 A164

    [13]

    Gu W B, Wang C Y 2000 J. Electrochem. Soc. 147 2910

    [14]

    Gerver R E, Meyers J P 2011 J. Electrochem. Soc. 158 A835

    [15]

    Doyle M, Newman J 1995 Electrochimica Acta. 40 2191

    [16]

    Nyman A, Zavalis T G, Elger R, Behm M, Lindbergh G 2010 J. Electrochem. Soc. 157 A1236

    [17]

    Smith K, Wang C Y 2006 J. Power Source. 160 662

    [18]

    Jin W R, Lu S G, Pang J 2011 Chinese journal of Inorganic Chemistry 27 1675 (in Chinese) [靳尉仁, 卢世刚, 庞静 2011 无机化学学报 27 1675]

    [19]

    Pesaran A A, Burch S D, Keyser M 1999 4th Vehicle Thermal Management Systems Conference and Exhibition London, UK, May 24–27

    [20]

    Che D L 2009 Master Dissertation (Wuhan: Wuhan University of technology) (in Chinese) [车杜兰 2009 硕士学位论文 (武汉: 武汉理工大学)]

    [21]

    Li W C, Lu S G 2010 The Chinese Journal of Nonferrous Metals 22 1156 (in Chinese) [李文成, 卢世刚 2010 中国有色金属学报 22 1156]

    [22]

    Yang K, An J J, Chen S 2010 J. Them anal Calorim. 99 515

    [23]

    Al-Hallaj S, Maleki H, Hong J S, Selman J R 1999 J. Power Source 83 1

  • [1] 王学章, 李科群. 锂电池叉流流道液冷结构设计及散热特性分析. 物理学报, 2022, 71(18): 184702. doi: 10.7498/aps.71.20220212
    [2] 肖凯博, 郑建刚, 蒋新颖, 蒋学君, 吴文龙, 严雄伟, 王振国, 郑万国. 高重复频率水冷Nd:YAG激活镜放大器的温度特性. 物理学报, 2021, 70(3): 034203. doi: 10.7498/aps.70.20201042
    [3] 陈云天, 王经纬, 陈伟锦, 徐竞. 互易波导模式耦合理论. 物理学报, 2020, 69(15): 154206. doi: 10.7498/aps.69.20200194
    [4] 钟振, 张腾, 张杰, 陈世国. “嫦娥5号”登陆候选地Mons Rümker的光照与温度特征分析. 物理学报, 2020, 69(11): 119601. doi: 10.7498/aps.69.20200114
    [5] 庞辉. 基于电化学模型的锂离子电池多尺度建模及其简化方法. 物理学报, 2017, 66(23): 238801. doi: 10.7498/aps.66.238801
    [6] 李策, 冯国英, 杨火木. 流体直接冷却薄板条介质温度及应力的解析表达. 物理学报, 2016, 65(5): 054204. doi: 10.7498/aps.65.054204
    [7] 周子超, 王小林, 陶汝茂, 张汉伟, 粟荣涛, 周朴, 许晓军. 高功率梯度掺杂增益光纤温度特性理论研究. 物理学报, 2016, 65(10): 104204. doi: 10.7498/aps.65.104204
    [8] 汤依伟, 艾亮, 程昀, 王安安, 李书国, 贾明. 锂离子动力电池高倍率充放电过程中弛豫行为的仿真. 物理学报, 2016, 65(5): 058201. doi: 10.7498/aps.65.058201
    [9] 赵娜, 刘建设, 李铁夫, 陈炜. 超导量子比特的耦合研究进展. 物理学报, 2013, 62(1): 010301. doi: 10.7498/aps.62.010301
    [10] 李群宏, 闫玉龙, 杨丹. 耦合电路系统的分岔研究. 物理学报, 2012, 61(20): 200505. doi: 10.7498/aps.61.200505
    [11] 陈焕庭, 吕毅军, 高玉琳, 陈忠, 庄榕榕, 周小方, 周海光. 功率型GaN基发光二极管芯片表面温度及亮度分布的物理特性研究. 物理学报, 2012, 61(16): 167104. doi: 10.7498/aps.61.167104
    [12] 陈章耀, 毕勤胜. Jerk系统耦合的分岔和混沌行为. 物理学报, 2010, 59(11): 7669-7678. doi: 10.7498/aps.59.7669
    [13] 王增, 董刚, 杨银堂, 李建伟. 考虑温度分布效应的非对称RLC树时钟偏差研究. 物理学报, 2010, 59(8): 5646-5651. doi: 10.7498/aps.59.5646
    [14] 邹建龙, 马西奎. 级联功率因数校正变换器的级间耦合非线性动力学行为分析. 物理学报, 2010, 59(6): 3794-3801. doi: 10.7498/aps.59.3794
    [15] 刘勇. 耦合系统的混沌相位同步. 物理学报, 2009, 58(2): 749-755. doi: 10.7498/aps.58.749
    [16] 张琪昌, 田瑞兰, 王 炜. 一类机电耦合非线性动力系统的混沌动力学特征. 物理学报, 2008, 57(5): 2799-2804. doi: 10.7498/aps.57.2799
    [17] 黄生荣, 陈 朝. 纳秒级脉冲激光诱导Zn掺杂过程中GaN/Al2O3材料的温度分布及热形变解析分析. 物理学报, 2007, 56(8): 4596-4601. doi: 10.7498/aps.56.4596
    [18] 田洪涛, 陈 朝. 连续激光诱导Zn/InP掺杂过程中温度分布的解析计算. 物理学报, 2003, 52(2): 367-371. doi: 10.7498/aps.52.367
    [19] 蔡炜颖, 李志锋, 陆 卫, 李守荣, 梁平治. Si微电阻桥温度分布与热传导特性的显微Raman光谱研究. 物理学报, 2003, 52(11): 2923-2928. doi: 10.7498/aps.52.2923
    [20] 郑瑞伦, 陈洪, 刘俊. 矩形激光脉冲辐照下金属板材料温度分布研究. 物理学报, 2002, 51(3): 554-558. doi: 10.7498/aps.51.554
计量
  • 文章访问数:  5135
  • PDF下载量:  876
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-03-08
  • 修回日期:  2013-04-16
  • 刊出日期:  2013-08-05

/

返回文章
返回