搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氢化物气相外延生长高质量GaN膜生长参数优化研究

张李骊 刘战辉 修向前 张荣 谢自力

引用本文:
Citation:

氢化物气相外延生长高质量GaN膜生长参数优化研究

张李骊, 刘战辉, 修向前, 张荣, 谢自力

Optimization of the parameters for growth high-qulity GaN film by hydride vapor phase epitaxy

Zhang Li-Li, Liu Zhan-Hui, Xiu Xiang-Qian, Zhang Rong, Xie Zi-Li
PDF
导出引用
  • 系统研究了低温成核层生长时间、高温生长时的V/Ⅲ 比以及生长温度对氢化物气相外延生长GaN膜晶体质量的影响. 研究发现合适的低温成核层为后续高温生长提供成核中心, 并能有效降低外延膜与衬底间的界面自由能, 促进成核岛的横向生长; 优化的V/Ⅲ比和最佳生长温度有利于降低晶体缺陷密度, 促进横向生长, 增强外延膜的二维生长. 利用扫描电子显微镜、原子力显微镜、高分辨X射线衍射、 低温光致发光谱和室温拉曼光谱对优化条件下生长的GaN外延膜进行了结构和光电特性表征. 测试结果表明, 膜表面平整光滑, 呈现二维生长模式表面形貌; (002)和(102)面摇摆曲线半高宽分别为317和343 arcsec; 低温光致发光谱中近带边发射峰为3.478 eV附近的中性施主束缚激子发射峰, 存在11 meV的蓝移, 半高宽为10 meV, 并且黄带发光强度很弱;常温拉曼光谱中E2 (high) 峰发生1.1 cm-1蓝移.结果表明, 优化条件下生长的GaN外延膜具有良好的晶体质量和光电特性, 但GaN 膜中存在压应力.
    In this paper, the processing parameters of growing GaN epilayer by hydride vapor phase epitaxy are optimized. The influences of the low-temperature (LT) nucleation layer growth time, V/Ⅲ precursor ratio and the growth temperature on GaN layer are investigated by the high-resolution X-ray diffraction (HRXRD) signature for the asymmetric and symmetric reflections. The investigation finds that the LT-nucleation layer not only supplies the nucleation centers having good crystal quality, but also promotes the lateral growth of the sequent high temperature (HT) growth. The optimal LT nucleation layer growth time, V/Ⅲ precursor ratio and the growth temperature can effectively enhance lateral growth to reduce the crystal defects and are favorable to converting the growth mechanism from three-dimension to two-dimension in HT growth. The structural and optoelectronic properties of the as-grown GaN layer with a thickness of 15 μat the optimal parameters are studied by scanning electron microcopy, atomic force microscopy (AFM), HRXRD, Raman spectra, and photoluminescence (PL) measurements. X-ray rocking curves show that the full widths at half maximum of (002) and (102) are 317 and 343 arcsec, respectively. The surface roughness (rms: root mean square) is 0.334 nm detected using AFM. These characteristics show that the sample has good lattice quality and smooth surface morphology. In PL spectrum, the near band edge emission is dominated by emission from excitons bound to neutral donors (D0X) near 3.478 eV with 11 meV blue-shift and the yellow band emission is very weak. The results indicate that the GaN layer has good crystal quality and excellent optoelectronic properties, but a little biaxial in-plane compressive strain also exists in it due to the lattice and thermal mismatch.
    • 基金项目: 国家重点基础研究发展计划(批准号: 2011CB301900, 2012CB619304)、国家自然科学基金(批准号: 60990311, 60906025, 61176063)、国家自然科学基金青年科学基金(批准号: 51002079, 21203098)和国家高技术研究发展计划(批准号: 2011AA03A103)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant Nos. 2011CB301900, 2012CB619304), the National Natural Science Foundation of China (Grant Nos. 60990311, 60906025, 61176063), the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos. 51002079, 21203098), and the National High Technology Research and Development Program of China (Grant No. 2011AA03A103).
    [1]

    Nakamura S, Senoh M, Iwasa N, Nagahama S, Yamada T, Mukai T 1995 Jpn. J. Appl. Phys. 34 L1332

    [2]

    Zhang J P, Chitnis A, Adivarahan V, Wu S, Mandavilli V, Pachipulusu R, Shatalov M, Simin G, Yang J W, Khan M A 2002 Appl. Phys. Lett. 81 4910

    [3]

    Andre Y, Trassoudaine A, Tourret J, Cadoret R, Gil E, Castelluci D, Aoude O, Disseix P 2007 J. Cryst. Growth 306 86

    [4]

    Lee D Y, Han S H, Lee D J, Lee J W, Kim D J, Kim Y S, Kim S T, Leem J Y 2013 Appl. Phys. Lett. 102 011115

    [5]

    Mei J, Liu R, Ponce F A, Omiya H, Mukai T 2007 Appl. Phys. Lett. 90 171922

    [6]

    Maruska H P, Tietjen J J 1969 Appl. Phys. Lett. 15 327

    [7]

    Hageman P R, Kirilyuk V, Corbeek W H M, Weyher J L, Lucznik B, Bockowski M, Porowski S, Mller S 2003 J. Cryst. Growth 255 241

    [8]

    Ishibashi A, Kidoguchi I, Sugahara G, Ban Y 2000 J. Cryst. Growth 221 338

    [9]

    Tourret J, Gourmala O, André Y, Trassoudaine A, Gil E, Castelluci D, Cadoret R 2009 J. Cryst. Growth 311 1460

    [10]

    Nam O H, Bremser M D, Zheleva T S, Davis R F 1997 Appl. Phys. Lett. 71 2638

    [11]

    Zheleva T S, Nam O H, Bremser M D, Davis R F 1997 Appl. Phys. Lett. 71 2472

    [12]

    Akasaki I, Amano H, Koide Y, Hiramatsu K, Sawaki N 1989 J. Cryst. Growth 98 209

    [13]

    Sumiya M, Ogusu N, Yotsuda Y, Itoh M, Fuke S, Nakamura T, Mochizuki S, Sano T, Kamiyama S, Amano H, Akasaki I 2003 J. Appl. Phys. 93 1311

    [14]

    Xue J S, Hao Y, Zhang J C, Ni J Y 2010 Chin. Phys. B 19 057203

    [15]

    Lin Z Y, Zhang J C, Zhou H, Li X G, Meng F N, Zhang L X, Ai S, Xu S R, Zhao Y, Hao Y 2012 Chin. Phys. B 21 126804

    [16]

    Ni Y Q, He Z Y, Zhong J, Yao Y, Yang F, Xiang P, Zhang B J, Liu Y 2013 Chin. Phys. B 22 088104

    [17]

    Peng D S, Chen Z G, Tan C C 2012 Chin. Phys. B 21 128101

    [18]

    Zhao W, Wang L, Wang J X, Luo Y 2011 Chin. Phys. B 20 076101

    [19]

    Qiu K, Zhong F, Li X H, Yin Z J, Ji C J, Han Q F, Chen J R, Cao X C, Wang Y Q 2007 Chin. Phys. 16 2082

    [20]

    Zhou A, Xiu X Q, Zhang R, Xie Z L, Hua X M, Liu B, Han P, Gu S L, Shi Y, Zheng Y D 2013 Chin. Phys. B 22 017801

    [21]

    Du Y H, Wu J J, Luo W K, John G, Han T, Tao Y B, Yang Z J, Yu T J, Zhang G Y 2011 Chin. Phys. B 20 098101

    [22]

    Wang L, Wang J X, Zhao W, Zou X, Luo Y 2010 Chin. Phys. B 19 076803

    [23]

    Chen Z, Yang W, Liu L, Wan C H, Li L, He Y F, Liu N Y, Wang L, Li D, Chen W H, Hu X D 2012 Chin. Phys. B 21 108505

    [24]

    Jiang R, Lu H, Chen D J, Ren F F, Yan D W, Zhang R, Zheng Y D 2013 Chin. Phys. B 22 047805

    [25]

    Chen X L, Kong F M, Li K, Gao H, Yue Q Y 2013 Acta Phys. Sin. 62 017805 (in Chinese) [陈新莲, 孔凡敏, 李康, 高晖, 岳庆炀 2013 物理学报 62 017805]

    [26]

    Le L C, Zhao D G, Wu L L, Deng Y, Jiang D S, Zhu Jian J, Liu Z S, Wang H, Zhang S M, Zhang B S, Yang H 2011 Chin. Phys. B 20 127306

    [27]

    Martin D, Napierala J, Ilegems M, Butté R, Grandjean N 2006 Appl. Phys. Lett. 88 241914

    [28]

    Hersee S D, Ramer J, Zheng K, Kranenberg C, Malloy K, Banas M, Goorsky M 1995 J. Electron. Mater. 24 1519

    [29]

    Wickenden A E, Wickenden D K, Kistenmacher T J 1994 J. Appl. Phys. 75 5367

    [30]

    Meng F Y, Han I, McFelea H, Lindow E, Bertram R, Werkhoven C, Arena C, Mahajan S 2011 J. Cryst. Growth 327 13

    [31]

    Heying B, Wu X H, Keller S, Li Y, Kapolnek D, Keller B P, Denbaars S P, Speck J S 1996 Appl. Phys. Lett. 68 643

    [32]

    Ruterana P, Albrecht M, Neugebauer J 2003 Nitride Semiconductors: Handbook on Materials and Devices (New York: Wiley-VCH) p49

    [33]

    Lucznik B, Pastuszka B, Grzegory I, Boćkowski M, Kamler G, Staszewska E L, Porowski S 2005 J. Cryst. Growth 281 38

    [34]

    Ito T, Sumiya M, Takano Y, Ohtsuka K, Fuke S 1999 Jpn. J. Appl. Phys. 38 649

    [35]

    Kim S Y, Lee H J, Park S H, Lee W, Jung M N, Fujii K, Goto T, Sekiguchi T, Chang J, Kil G, Yao T 2010 J. Cryst. Growth 312 2150

    [36]

    Freitas Jr J A 2010 J. Phys. D: Appl. Phys. 43 073001

    [37]

    Ueda T, Yuri M, Harris Jr J S 2011 Jpn. J. Appl. Phys. 50 085501

    [38]

    Solomon G S, Miller D J, Ramsteiner M, Trampert A, Brandt O, Ploog K H 2005 Appl. Phys. Lett. 87 181912

    [39]

    Paskova T, Valcheva E, Birch J, Tungasmita S, PPersson P O Å, Beccard R, Heuken M, Monemar M 2000 J. Appl. Phys. 88 5729

    [40]

    Wood D A, Parbrook P J, Lynch R J, Lada M, Cullis A G 2001 Phys. Stat. Sol. A 188 641

    [41]

    Darakchieva V, Monemar B, Usui A 2007 Appl. Phys. Lett. 91 031911

    [42]

    Jain S C, Willander M, Narayan J, Overstraeten R V 2000 J. Appl. Phys. 87 965

    [43]

    Kisielowski C, Kruger J, Ruvimov S, Suski T, Ager III J W, Jones E, Liliental-Weber Z, Rubin M, Weber E R, Bremser M D, Davis R F 1996 Phys. Rev. B 54 17745

    [44]

    Monemar B 2001 J. Phys.: Condens. Matter. 13 7011

    [45]

    Oh E, Lee S K, Park S S, Lee K Y, Song I J, Han J Y 2001 Appl. Phys. Lett. 78 273

    [46]

    Davydov V Y, Kitaev Y E, Goncharuk I N, Smirnov A N, Graul J, Semchinova O, Uffmann D, Smirnov M B, Mirgorodsky A P, Evarestov R A 1998 Phys. Rev. B 58 12899

  • [1]

    Nakamura S, Senoh M, Iwasa N, Nagahama S, Yamada T, Mukai T 1995 Jpn. J. Appl. Phys. 34 L1332

    [2]

    Zhang J P, Chitnis A, Adivarahan V, Wu S, Mandavilli V, Pachipulusu R, Shatalov M, Simin G, Yang J W, Khan M A 2002 Appl. Phys. Lett. 81 4910

    [3]

    Andre Y, Trassoudaine A, Tourret J, Cadoret R, Gil E, Castelluci D, Aoude O, Disseix P 2007 J. Cryst. Growth 306 86

    [4]

    Lee D Y, Han S H, Lee D J, Lee J W, Kim D J, Kim Y S, Kim S T, Leem J Y 2013 Appl. Phys. Lett. 102 011115

    [5]

    Mei J, Liu R, Ponce F A, Omiya H, Mukai T 2007 Appl. Phys. Lett. 90 171922

    [6]

    Maruska H P, Tietjen J J 1969 Appl. Phys. Lett. 15 327

    [7]

    Hageman P R, Kirilyuk V, Corbeek W H M, Weyher J L, Lucznik B, Bockowski M, Porowski S, Mller S 2003 J. Cryst. Growth 255 241

    [8]

    Ishibashi A, Kidoguchi I, Sugahara G, Ban Y 2000 J. Cryst. Growth 221 338

    [9]

    Tourret J, Gourmala O, André Y, Trassoudaine A, Gil E, Castelluci D, Cadoret R 2009 J. Cryst. Growth 311 1460

    [10]

    Nam O H, Bremser M D, Zheleva T S, Davis R F 1997 Appl. Phys. Lett. 71 2638

    [11]

    Zheleva T S, Nam O H, Bremser M D, Davis R F 1997 Appl. Phys. Lett. 71 2472

    [12]

    Akasaki I, Amano H, Koide Y, Hiramatsu K, Sawaki N 1989 J. Cryst. Growth 98 209

    [13]

    Sumiya M, Ogusu N, Yotsuda Y, Itoh M, Fuke S, Nakamura T, Mochizuki S, Sano T, Kamiyama S, Amano H, Akasaki I 2003 J. Appl. Phys. 93 1311

    [14]

    Xue J S, Hao Y, Zhang J C, Ni J Y 2010 Chin. Phys. B 19 057203

    [15]

    Lin Z Y, Zhang J C, Zhou H, Li X G, Meng F N, Zhang L X, Ai S, Xu S R, Zhao Y, Hao Y 2012 Chin. Phys. B 21 126804

    [16]

    Ni Y Q, He Z Y, Zhong J, Yao Y, Yang F, Xiang P, Zhang B J, Liu Y 2013 Chin. Phys. B 22 088104

    [17]

    Peng D S, Chen Z G, Tan C C 2012 Chin. Phys. B 21 128101

    [18]

    Zhao W, Wang L, Wang J X, Luo Y 2011 Chin. Phys. B 20 076101

    [19]

    Qiu K, Zhong F, Li X H, Yin Z J, Ji C J, Han Q F, Chen J R, Cao X C, Wang Y Q 2007 Chin. Phys. 16 2082

    [20]

    Zhou A, Xiu X Q, Zhang R, Xie Z L, Hua X M, Liu B, Han P, Gu S L, Shi Y, Zheng Y D 2013 Chin. Phys. B 22 017801

    [21]

    Du Y H, Wu J J, Luo W K, John G, Han T, Tao Y B, Yang Z J, Yu T J, Zhang G Y 2011 Chin. Phys. B 20 098101

    [22]

    Wang L, Wang J X, Zhao W, Zou X, Luo Y 2010 Chin. Phys. B 19 076803

    [23]

    Chen Z, Yang W, Liu L, Wan C H, Li L, He Y F, Liu N Y, Wang L, Li D, Chen W H, Hu X D 2012 Chin. Phys. B 21 108505

    [24]

    Jiang R, Lu H, Chen D J, Ren F F, Yan D W, Zhang R, Zheng Y D 2013 Chin. Phys. B 22 047805

    [25]

    Chen X L, Kong F M, Li K, Gao H, Yue Q Y 2013 Acta Phys. Sin. 62 017805 (in Chinese) [陈新莲, 孔凡敏, 李康, 高晖, 岳庆炀 2013 物理学报 62 017805]

    [26]

    Le L C, Zhao D G, Wu L L, Deng Y, Jiang D S, Zhu Jian J, Liu Z S, Wang H, Zhang S M, Zhang B S, Yang H 2011 Chin. Phys. B 20 127306

    [27]

    Martin D, Napierala J, Ilegems M, Butté R, Grandjean N 2006 Appl. Phys. Lett. 88 241914

    [28]

    Hersee S D, Ramer J, Zheng K, Kranenberg C, Malloy K, Banas M, Goorsky M 1995 J. Electron. Mater. 24 1519

    [29]

    Wickenden A E, Wickenden D K, Kistenmacher T J 1994 J. Appl. Phys. 75 5367

    [30]

    Meng F Y, Han I, McFelea H, Lindow E, Bertram R, Werkhoven C, Arena C, Mahajan S 2011 J. Cryst. Growth 327 13

    [31]

    Heying B, Wu X H, Keller S, Li Y, Kapolnek D, Keller B P, Denbaars S P, Speck J S 1996 Appl. Phys. Lett. 68 643

    [32]

    Ruterana P, Albrecht M, Neugebauer J 2003 Nitride Semiconductors: Handbook on Materials and Devices (New York: Wiley-VCH) p49

    [33]

    Lucznik B, Pastuszka B, Grzegory I, Boćkowski M, Kamler G, Staszewska E L, Porowski S 2005 J. Cryst. Growth 281 38

    [34]

    Ito T, Sumiya M, Takano Y, Ohtsuka K, Fuke S 1999 Jpn. J. Appl. Phys. 38 649

    [35]

    Kim S Y, Lee H J, Park S H, Lee W, Jung M N, Fujii K, Goto T, Sekiguchi T, Chang J, Kil G, Yao T 2010 J. Cryst. Growth 312 2150

    [36]

    Freitas Jr J A 2010 J. Phys. D: Appl. Phys. 43 073001

    [37]

    Ueda T, Yuri M, Harris Jr J S 2011 Jpn. J. Appl. Phys. 50 085501

    [38]

    Solomon G S, Miller D J, Ramsteiner M, Trampert A, Brandt O, Ploog K H 2005 Appl. Phys. Lett. 87 181912

    [39]

    Paskova T, Valcheva E, Birch J, Tungasmita S, PPersson P O Å, Beccard R, Heuken M, Monemar M 2000 J. Appl. Phys. 88 5729

    [40]

    Wood D A, Parbrook P J, Lynch R J, Lada M, Cullis A G 2001 Phys. Stat. Sol. A 188 641

    [41]

    Darakchieva V, Monemar B, Usui A 2007 Appl. Phys. Lett. 91 031911

    [42]

    Jain S C, Willander M, Narayan J, Overstraeten R V 2000 J. Appl. Phys. 87 965

    [43]

    Kisielowski C, Kruger J, Ruvimov S, Suski T, Ager III J W, Jones E, Liliental-Weber Z, Rubin M, Weber E R, Bremser M D, Davis R F 1996 Phys. Rev. B 54 17745

    [44]

    Monemar B 2001 J. Phys.: Condens. Matter. 13 7011

    [45]

    Oh E, Lee S K, Park S S, Lee K Y, Song I J, Han J Y 2001 Appl. Phys. Lett. 78 273

    [46]

    Davydov V Y, Kitaev Y E, Goncharuk I N, Smirnov A N, Graul J, Semchinova O, Uffmann D, Smirnov M B, Mirgorodsky A P, Evarestov R A 1998 Phys. Rev. B 58 12899

  • [1] 刘庆彬, 蔚翠, 郭建超, 马孟宇, 何泽召, 周闯杰, 高学栋, 余浩, 冯志红. 多晶金刚石对硅基氮化镓材料的影响. 物理学报, 2023, 72(9): 098104. doi: 10.7498/aps.72.20221942
    [2] 雷振帅, 孙小伟, 刘子江, 宋婷, 田俊红. 氮化镓相图预测及其高压熔化特性研究. 物理学报, 2022, 71(19): 198102. doi: 10.7498/aps.71.20220510
    [3] 苑营阔, 郭伟玲, 杜在发, 钱峰松, 柳鸣, 王乐, 徐晨, 严群, 孙捷. 石墨烯晶体管优化制备工艺在单片集成驱动氮化镓微型发光二极管中的应用. 物理学报, 2021, 70(19): 197801. doi: 10.7498/aps.70.20210122
    [4] 谢飞, 臧航, 刘方, 何欢, 廖文龙, 黄煜. 氮化镓在不同中子辐照环境下的位移损伤模拟研究. 物理学报, 2020, 69(19): 192401. doi: 10.7498/aps.69.20200064
    [5] 汤文辉, 刘邦武, 张柏诚, 李敏, 夏洋. 等离子增强原子层沉积低温生长GaN薄膜. 物理学报, 2017, 66(9): 098101. doi: 10.7498/aps.66.098101
    [6] 王波, 房玉龙, 尹甲运, 刘庆彬, 张志荣, 郭艳敏, 李佳, 芦伟立, 冯志红. 表面预处理对石墨烯上范德瓦耳斯外延生长GaN材料的影响. 物理学报, 2017, 66(24): 248101. doi: 10.7498/aps.66.248101
    [7] 王光绪, 陈鹏, 刘军林, 吴小明, 莫春兰, 全知觉, 江风益. 刻蚀AlN缓冲层对硅衬底N极性n-GaN表面粗化的影响. 物理学报, 2016, 65(8): 088501. doi: 10.7498/aps.65.088501
    [8] 张超宇, 熊传兵, 汤英文, 黄斌斌, 黄基锋, 王光绪, 刘军林, 江风益. 图形硅衬底GaN基发光二极管薄膜去除衬底及AlN缓冲层后单个图形内微区发光及 应力变化的研究. 物理学报, 2015, 64(18): 187801. doi: 10.7498/aps.64.187801
    [9] 毛清华, 刘军林, 全知觉, 吴小明, 张萌, 江风益. p型层结构与掺杂对GaInN发光二极管正向电压温度特性的影响. 物理学报, 2015, 64(10): 107801. doi: 10.7498/aps.64.107801
    [10] 黄斌斌, 熊传兵, 汤英文, 张超宇, 黄基锋, 王光绪, 刘军林, 江风益. 硅衬底氮化镓基LED薄膜转移至柔性黏结层基板后其应力及发光性能变化的研究. 物理学报, 2015, 64(17): 177804. doi: 10.7498/aps.64.177804
    [11] 李水清, 汪莱, 韩彦军, 罗毅, 邓和清, 丘建生, 张洁. 氮化镓基发光二极管结构中粗化 p型氮化镓层的新型生长方法. 物理学报, 2011, 60(9): 098107. doi: 10.7498/aps.60.098107
    [12] 毛清华, 江风益, 程海英, 郑畅达. p-AlGaN电子阻挡层Al组分对Si衬底绿光LED性能影响的研究. 物理学报, 2010, 59(11): 8078-8082. doi: 10.7498/aps.59.8078
    [13] 邢艳辉, 韩军, 邓军, 李建军, 徐晨, 沈光地. p型GaN低温粗化提高发光二极管特性. 物理学报, 2010, 59(2): 1233-1236. doi: 10.7498/aps.59.1233
    [14] 沈光地, 张剑铭, 邹德恕, 徐 晨, 顾晓玲. 大功率GaN基发光二极管的电流扩展效应及电极结构优化研究. 物理学报, 2008, 57(1): 472-476. doi: 10.7498/aps.57.472
    [15] 刘 杰, 郝 跃, 冯 倩, 王 冲, 张进城, 郭亮良. 基于I-V-T和C-V-T的GaN上Ni/Au肖特基接触特性研究. 物理学报, 2007, 56(6): 3483-3487. doi: 10.7498/aps.56.3483
    [16] 李 彤, 王怀兵, 刘建平, 牛南辉, 张念国, 邢艳辉, 韩 军, 刘 莹, 高 国, 沈光地. Delta掺杂制备p-GaN薄膜及其电性能研究. 物理学报, 2007, 56(2): 1036-1040. doi: 10.7498/aps.56.1036
    [17] 郭宝增, 宫 娜, 师建英, 王志宇. 纤锌矿相GaN空穴输运特性的Monte Carlo模拟研究. 物理学报, 2006, 55(5): 2470-2475. doi: 10.7498/aps.55.2470
    [18] 刘乃鑫, 王怀兵, 刘建平, 牛南辉, 韩 军, 沈光地. p型氮化镓的低温生长及发光二极管器件的研究. 物理学报, 2006, 55(3): 1424-1429. doi: 10.7498/aps.55.1424
    [19] 李拥华, 徐彭寿, 潘海滨, 徐法强, 谢长坤. GaN(1010)表面结构的第一性原理计算. 物理学报, 2005, 54(1): 317-322. doi: 10.7498/aps.54.317
    [20] 方 鲲, 高善民, 邱海林, 曹传宝, 朱鹤孙. 立方相β-GaN纳米晶的气相化学反应制备研究. 物理学报, 2005, 54(5): 2267-2271. doi: 10.7498/aps.54.2267
计量
  • 文章访问数:  5097
  • PDF下载量:  800
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-05-12
  • 修回日期:  2013-07-17
  • 刊出日期:  2013-10-05

/

返回文章
返回