搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

溶液液滴蒸发变干的环状沉积

张文彬 廖龙光 于同旭 纪爱玲

引用本文:
Citation:

溶液液滴蒸发变干的环状沉积

张文彬, 廖龙光, 于同旭, 纪爱玲

Ring deposition of drying suspension droplets

Zhang Wen-Bin, Liao Long-Guang, Yu Tong-Xu, Ji Ai-Ling
PDF
导出引用
  • 液体蒸发驱动的颗粒自组装现象在许多的工业技术中有重要应用. 本文利用显微镜观测含有颗粒物质的液滴变干后留在固体表面的颗粒形成的环状沉积图案. 采用微米粒径的SiO2小球水溶液液滴蒸发变干模拟咖啡环的形成过程, 结果发现液滴蒸发过程中接触线的钉扎是环状沉积的必要条件. 在液滴蒸发过程中颗粒随着补偿流不断的向液滴边缘移动, 聚集在接触线处形成环. 液滴蒸发变干后残留在液滴内部的颗粒数随颗粒质量分数的增加而增加, 可以达到单层的颗粒排列. 而玻璃衬底上的颗粒环在颗粒质量分数很小时, 形成单层排列, 且一排一排地生长. 蒸发过程中颗粒环由于液滴边缘的尺寸限制向液滴中心缓慢移动. 这会导致液滴中不同大小颗粒的分离.
    Deposition of colloidal particles in a drying droplet is important in many scientific researches and technological applications. In this work, the ring deposition of drying droplets on a solid substrate is investigated experimentally at a microscopic level. A ring deposition is formed at the contact line as the water solution droplet containing SiO2 particles is drying, just like the formation of coffee ring. Contact line pinning is crucial to the ring deposition formation. There will be a replenish flow in the droplet towards the edge, and the particles are driven to the contact line, deposited on the substrate. As the particle mass fraction is large, the particles which are left inside the spot, when the droplet dries out, may form a single particle layer, packing in order. The contact angle of the droplet on glass substrate is very small, the SiO2 particles will gather at the rim of the droplet, which initially form a chain along the contact line. As more particles come to the rim, they are deposited in a line by line way to form a 2D close packing. Since the contact angle decreases with evaporation when the contact line is pinned, a capillary force between liquid surface and particles arises once the height of droplet surface near the contact line is lower than that of the particle, pushing the particles to move inward. The effect on the larger particles is more pronounced-it even leads to a separation of the particles, with the smaller ones at the outer side.
    • 基金项目: 国家重点基础研究发展计划(批准号:2009CB930801,2012CB933002);国家自然科学基金(批准号:11290161,51172272)和中国科学院"水科学方向性项目"资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant Nos. 2009CB930801, 2012CB933002), the National Natural Science Foundation of China (Grant Nos. 11290161, 51172272), and the National Basic Research Program of China, the Innovation Program of the Chinese Academy of Sciences.
    [1]

    Monteux C, Lequeux F 2011 Langmuir 27 2917

    [2]

    Bhardwaj R, Fang X H, Somasundaran P, Attinger D 2010 Langmuir 26 7833

    [3]

    Parneix C, Vandoolaeghe P, Nikolayev V, Quéré D, Li J, Cabane B 2010 Phys. Rev. Lett. 105 266103

    [4]

    Li J, Cabane B, Sztucki M, Gummel J, Goehring L 2012 Langmuir 28 200

    [5]

    Fischer B J 2002 Langmuir 18 60

    [6]

    Velikov K P 2002 Science 296 106

    [7]

    Chen L F, Evans J R G 2009 Langmuir 25 11299

    [8]

    Bhardwaj R, Fang X H, Attinger D 2009 New J. Phys. 11 075020

    [9]

    Keseroğlu K, Çulha M 2011 J. Colloid Interface Sci. 360 8

    [10]

    Bigioni T P, Lin X M, Nguyen T T, Corwin E I, Witten T A, Jaeger H M 2006 Nat. Mater. 5 265

    [11]

    Choi S, Stassi S, Pisano A P, Zohdi T I 2010 Langmuir 26 11690

    [12]

    Hodges C S, Ding Y L, Biggs S 2010 J.Colloid Interface Sci. 352 99

    [13]

    Kaya D, Belyi V A, Muthukumar M 2010 J. Chem. Phys. 133 114905

    [14]

    Smalyukh I I, Zribi O V, Butler J C, Lavrentovich O D, Wong G C L 2006 Phys. Rev. Lett. 96 177801

    [15]

    Yakhno T A 2011 Phys. Chem. 1 10

    [16]

    Deegan R D, Bakajin O, Dupont T F, Huber G, Nagel S R, Witten T A 1997 Nature 389 827

    [17]

    Deegan R D, Bakajin O, Dupont T F, Huber G, Nagel S R, Witten T A 2000 Phys. Rev. E 62 756

    [18]

    Yunker P J, Gratale M, Lohr M A, Still T, Lubensky T C, Yodh A G 2012 Phys. Rev. Lett. 108 228303

    [19]

    Yunker P J, Still T, Lohr M A, Yodh A G 2011 Nature 476 308

    [20]

    Hu H, Larson R G 2006 J. Phys. Chem. B 110 7090

    [21]

    Still T, Yunker P J, Yodh A G 2012 Langmuir 28 4984

    [22]

    Truskett V, Stebe K J 2003 Langmuir 19 8271

    [23]

    Ristenpart W D, Kim P G, Domingues C, Wan J, Stone H A 2007 Phys. Rev. Lett. 99 234502

    [24]

    Xu J, Xia J F, Hong S W, Lin Z Q, Qiu F, Yang Y L 2006 Phys. Rev. Lett. 96 066104

    [25]

    Berteloot G, Hoang A, Daerr A, Kavehpour H P, Lequeux F, Limat L 2012 J. Colloid Interface Sci. 370 155

    [26]

    Maheshwari S, Zhang L, Zhu Y X, Chang H C 2008 Phys. Rev. Lett. 100 044503

    [27]

    Schäffer E, W P Z 2000 Phys. Rev. E 61 5257

    [28]

    Schäffer E, Wong P Z 1998 Phys. Rev. Lett. 80 3069

    [29]

    Weon B M, Je J H 2013 Phys. Rev. Lett. 110 028303

    [30]

    Jensen K E, Pennachio D, Recht D, Weitz D A, Spaepen F 2013 Soft Matter 9 320

    [31]

    Zhang J H, Li Y F, Zhang X M, Yang B 2010 Adv. Mater. 22 4249

    [32]

    Weon B M, Je J H 2010 Phys. Rev. E 82 015305

  • [1]

    Monteux C, Lequeux F 2011 Langmuir 27 2917

    [2]

    Bhardwaj R, Fang X H, Somasundaran P, Attinger D 2010 Langmuir 26 7833

    [3]

    Parneix C, Vandoolaeghe P, Nikolayev V, Quéré D, Li J, Cabane B 2010 Phys. Rev. Lett. 105 266103

    [4]

    Li J, Cabane B, Sztucki M, Gummel J, Goehring L 2012 Langmuir 28 200

    [5]

    Fischer B J 2002 Langmuir 18 60

    [6]

    Velikov K P 2002 Science 296 106

    [7]

    Chen L F, Evans J R G 2009 Langmuir 25 11299

    [8]

    Bhardwaj R, Fang X H, Attinger D 2009 New J. Phys. 11 075020

    [9]

    Keseroğlu K, Çulha M 2011 J. Colloid Interface Sci. 360 8

    [10]

    Bigioni T P, Lin X M, Nguyen T T, Corwin E I, Witten T A, Jaeger H M 2006 Nat. Mater. 5 265

    [11]

    Choi S, Stassi S, Pisano A P, Zohdi T I 2010 Langmuir 26 11690

    [12]

    Hodges C S, Ding Y L, Biggs S 2010 J.Colloid Interface Sci. 352 99

    [13]

    Kaya D, Belyi V A, Muthukumar M 2010 J. Chem. Phys. 133 114905

    [14]

    Smalyukh I I, Zribi O V, Butler J C, Lavrentovich O D, Wong G C L 2006 Phys. Rev. Lett. 96 177801

    [15]

    Yakhno T A 2011 Phys. Chem. 1 10

    [16]

    Deegan R D, Bakajin O, Dupont T F, Huber G, Nagel S R, Witten T A 1997 Nature 389 827

    [17]

    Deegan R D, Bakajin O, Dupont T F, Huber G, Nagel S R, Witten T A 2000 Phys. Rev. E 62 756

    [18]

    Yunker P J, Gratale M, Lohr M A, Still T, Lubensky T C, Yodh A G 2012 Phys. Rev. Lett. 108 228303

    [19]

    Yunker P J, Still T, Lohr M A, Yodh A G 2011 Nature 476 308

    [20]

    Hu H, Larson R G 2006 J. Phys. Chem. B 110 7090

    [21]

    Still T, Yunker P J, Yodh A G 2012 Langmuir 28 4984

    [22]

    Truskett V, Stebe K J 2003 Langmuir 19 8271

    [23]

    Ristenpart W D, Kim P G, Domingues C, Wan J, Stone H A 2007 Phys. Rev. Lett. 99 234502

    [24]

    Xu J, Xia J F, Hong S W, Lin Z Q, Qiu F, Yang Y L 2006 Phys. Rev. Lett. 96 066104

    [25]

    Berteloot G, Hoang A, Daerr A, Kavehpour H P, Lequeux F, Limat L 2012 J. Colloid Interface Sci. 370 155

    [26]

    Maheshwari S, Zhang L, Zhu Y X, Chang H C 2008 Phys. Rev. Lett. 100 044503

    [27]

    Schäffer E, W P Z 2000 Phys. Rev. E 61 5257

    [28]

    Schäffer E, Wong P Z 1998 Phys. Rev. Lett. 80 3069

    [29]

    Weon B M, Je J H 2013 Phys. Rev. Lett. 110 028303

    [30]

    Jensen K E, Pennachio D, Recht D, Weitz D A, Spaepen F 2013 Soft Matter 9 320

    [31]

    Zhang J H, Li Y F, Zhang X M, Yang B 2010 Adv. Mater. 22 4249

    [32]

    Weon B M, Je J H 2010 Phys. Rev. E 82 015305

  • [1] 贺华丹, 钟琦超, 解文军. 声悬浮条件下双水相液滴的蒸发与相分离. 物理学报, 2024, 73(3): 034304. doi: 10.7498/aps.73.20230963
    [2] 刘乔, 黄家宸, 王昊, 邓亚骏. 前进接触线薄液膜结构与运移机制. 物理学报, 2024, 73(1): 016801. doi: 10.7498/aps.73.20231296
    [3] 王浩, 徐进良. 油面上相邻Leidenfrost液滴的相互作用及运动机制. 物理学报, 2023, 72(5): 054401. doi: 10.7498/aps.72.20221822
    [4] 彭家略, 郭浩, 尤天涯, 纪献兵, 徐进良. 液滴碰撞Janus颗粒球表面的行为特征. 物理学报, 2021, 70(4): 044701. doi: 10.7498/aps.70.20201358
    [5] 杨亚晶, 梅晨曦, 章旭东, 魏衍举, 刘圣华. 液滴撞击液膜的穿越模式及运动特性. 物理学报, 2019, 68(15): 156101. doi: 10.7498/aps.68.20190604
    [6] 叶学民, 张湘珊, 李明兰, 李春曦. 自润湿流体液滴的热毛细迁移特性. 物理学报, 2018, 67(18): 184704. doi: 10.7498/aps.67.20180660
    [7] 叶学民, 张湘珊, 李明兰, 李春曦. 液滴在不同润湿性表面上蒸发时的动力学特性. 物理学报, 2018, 67(11): 114702. doi: 10.7498/aps.67.20180159
    [8] 刘燕文, 王小霞, 陆玉新, 田宏, 朱虹, 孟鸣凤, 赵丽, 谷兵. 用于电真空器件的金属材料蒸发特性. 物理学报, 2016, 65(6): 068502. doi: 10.7498/aps.65.068502
    [9] 叶学民, 李永康, 李春曦. 平衡接触角对受热液滴在水平壁面上铺展特性的影响. 物理学报, 2016, 65(10): 104704. doi: 10.7498/aps.65.104704
    [10] 陈福振, 强洪夫, 高巍然. 气粒两相流传热问题的光滑离散颗粒流体动力学方法数值模拟. 物理学报, 2014, 63(23): 230206. doi: 10.7498/aps.63.230206
    [11] 周建臣, 耿兴国, 林可君, 张永建, 臧渡洋. 微液滴在超疏水表面的受迫振动及其接触线的固着-移动转变. 物理学报, 2014, 63(21): 216801. doi: 10.7498/aps.63.216801
    [12] 毕菲菲, 郭亚丽, 沈胜强, 陈觉先, 李熠桥. 液滴撞击固体表面铺展特性的实验研究. 物理学报, 2012, 61(18): 184702. doi: 10.7498/aps.61.184702
    [13] 张明焜, 陈硕, 尚智. 带凹槽的微通道中液滴运动数值模拟. 物理学报, 2012, 61(3): 034701. doi: 10.7498/aps.61.034701
    [14] 马理强, 常建忠, 刘汉涛, 刘谋斌. 液滴溅落问题的光滑粒子动力学模拟. 物理学报, 2012, 61(5): 054701. doi: 10.7498/aps.61.054701
    [15] 吴宇航, 郑宁, 文平平, 李粮生, 史庆藩, 孙刚. 准二维二元混合颗粒动态循环反转分层的体积效应. 物理学报, 2011, 60(2): 024501. doi: 10.7498/aps.60.024501
    [16] 石自媛, 胡国辉, 周哲玮. 润湿性梯度驱动液滴运动的格子Boltzmann模拟. 物理学报, 2010, 59(4): 2595-2600. doi: 10.7498/aps.59.2595
    [17] 郭加宏, 戴世强, 代钦. 液滴冲击液膜过程实验研究. 物理学报, 2010, 59(4): 2601-2609. doi: 10.7498/aps.59.2601
    [18] 施娟, 李剑, 邱冰, 李华兵. 用晶格玻尔兹曼方法研究颗粒在涡流中的运动. 物理学报, 2009, 58(8): 5174-5178. doi: 10.7498/aps.58.5174
    [19] 戴兵, 罗向东, 王亚伟. 椭圆截面非球形颗粒群的多重光散射. 物理学报, 2009, 58(6): 3864-3869. doi: 10.7498/aps.58.3864
    [20] 疏学明, 方 俊, 申世飞, 刘勇进, 袁宏永, 范维澄. 火灾烟雾颗粒凝并分形特性研究. 物理学报, 2006, 55(9): 4466-4471. doi: 10.7498/aps.55.4466
计量
  • 文章访问数:  5645
  • PDF下载量:  552
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-05-03
  • 修回日期:  2013-07-06
  • 刊出日期:  2013-10-05

/

返回文章
返回