搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

介质加载复合光栅结构的色散特性研究

曹苗苗 刘文鑫 王勇 李科

引用本文:
Citation:

介质加载复合光栅结构的色散特性研究

曹苗苗, 刘文鑫, 王勇, 李科

Dispersion characteristics of dielectric loaded metal grating

Cao Miao-Miao, Liu Wen-Xin, Wang Yong, Li Ke
PDF
导出引用
  • 提出了一种用于Smith-Purcell器件的介质加载金属光栅周期慢波结构. 通过采用本征函数法和单模近似法求解了介质加载金属光栅的“热色”散方程,在同步点得到了注-波互作用的一阶和二阶增长率,分析了光栅槽宽和槽深对色散特性的影响,并研究了电子注参数及其与光栅表面距离等主要参数对增长率特性的影响. 结果表明:通过介质加载金属光栅有利于减弱色散,随着介质相对介电常数、槽宽度以及深度的增大,色散曲线变平缓且向低频区移动;当电子注参数变化时,一阶增长率曲线从整体上粗略地描述增长率变化趋势,二阶曲线则更精细地描述增长率相应值的变化. 利用软件MAGIC 对该结构的色散特性进行了二维模拟,模拟结果与理论计算值符合良好.
    A novel type of slow-wave structure for Smith-Purcell device called dielectric loaded metal grating, is proposed in this article. The “hot” dispersion align of the structure is obtained by using the eigen-function method and single-mode approximation. The first-and second-order growth rate of beam-wave interaction are obtained at the synchronization point. The effects of grating groove width and depth on dispersion characteristic are analyzed, and the influences of electron beam parameters and distance between electron beam and grating surface on growth rate characteristic are also studied. The results show that dielectric-loaded metal grating can effectively weaken the structure dispersion, and that with the increases of relative dielectric permittivity, groove width and depth, the dispersion curve becomes flatter and moves toward low frequency. When the electron beam voltage or current changes, the first-order growth rate curve can only roughly describe the change trend, while the second-order growth rate can accurately show the change values. The simulation of the structure is performed by using two-dimensional particle-in-cell code MAGIC, and the simulation results accord well with the theoretical results.
    • 基金项目: 国家自然科学基金(批准号:10905032,11275004)、国家高技术研究发展计划(批准号:2012AA8122007A)和中国科学院知识创新工程重要方向性项目(批准号:YYYJ-11235)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 10905032, 11275004), the National High Technology Research and Development Program of China (Grant No. 2012AA8122007A), and the Main Direction Program of Knowledge Innovation of Chinese Academy of Sciences (Grant No. YYYJ-11235).
    [1]

    Smith S J, Purcell E M 1953 Phys. Rev. 92 4

    [2]

    Marshall E M, Phillips P M, Walsh J E 1988 IEEE Trans. Plasma Sci. 16 2

    [3]

    Saviz S, Rezaei Z, Aghamir F M 2012 Chin. Phys. B 21 9

    [4]

    Wang M H, Ren Z M, Meng X Z 2011 Chin. Phys. B 20 5

    [5]

    Bratman V L, Dumesh B S 2002 Int. J. Infrar. Millim. Waves 23 11

    [6]

    Bakhtyari A, Walsh J E, Brownell J H 2002 Phys. Rev. E 65 6

    [7]

    Urata J, Goldstein M, Kimmitt M F, Naumov A, Platt C, Walsh J E 1998 Phys. Rev. Lett. 80 3

    [8]

    Wu J Q 2004 Chin. Phys. Lett. 21 11

    [9]

    Doucas G 2003 Int. J. Infrar. Millim. Waves 24 6

    [10]

    Chen J W, Fu S F, Zhang D K 1984 Acta Opt. Sin. 4 7 (in Chinese) [陈建文, 傅淑芬, 张大可 1984 光学学报 4 7]

    [11]

    Xiong P F, Wang Y T 1996 High Power Laser and Particle Beams 8 1 (in Chinese) [熊平凡, 王友棠 1996 强激光与粒子束 8 1]

    [12]

    Lu Z G, Wei Y Y, Gong Y B 2006 J. Infrar. Millim Waves 25 5 (in Chinese) [路志刚, 魏彦玉, 宫玉彬 2006 红外与毫米波学报 25 5]

    [13]

    Wang W X, Gong Y B 2007 Acta Phys. Sin. 56 12 (in Chinese) [王文祥, 宫玉彬, 魏彦玉 2007 物理学报 56 12]

    [14]

    Zhang K Q, Li D J 2001 Electromagnetic Theory for Microwaves and Optoelectronics (Beijing: Publishing House of Electronics Industry) p382 (in Chinese) [张克潜, 李德杰 2001 微波与光电子学中的电磁理论 (北京: 电子工业出版社) 第382页]

    [15]

    Liu W X, Yang Z Q 2008 J. Infrar. Millim. Waves 27 2 (in Chinese) [刘文鑫, 杨梓强 2008 红外与毫米波学报 27 2]

    [16]

    McVey B D 1994 Microwave Theory and Techniques IEEE Trans. on 42 6

    [17]

    Joe J, Louis L J, Share J E, Booske J H 1997 Phys. Plasmas 4 12

    [18]

    Joe J, Share J E, Booske J H 1994 Phys. Plasmas 1 1

  • [1]

    Smith S J, Purcell E M 1953 Phys. Rev. 92 4

    [2]

    Marshall E M, Phillips P M, Walsh J E 1988 IEEE Trans. Plasma Sci. 16 2

    [3]

    Saviz S, Rezaei Z, Aghamir F M 2012 Chin. Phys. B 21 9

    [4]

    Wang M H, Ren Z M, Meng X Z 2011 Chin. Phys. B 20 5

    [5]

    Bratman V L, Dumesh B S 2002 Int. J. Infrar. Millim. Waves 23 11

    [6]

    Bakhtyari A, Walsh J E, Brownell J H 2002 Phys. Rev. E 65 6

    [7]

    Urata J, Goldstein M, Kimmitt M F, Naumov A, Platt C, Walsh J E 1998 Phys. Rev. Lett. 80 3

    [8]

    Wu J Q 2004 Chin. Phys. Lett. 21 11

    [9]

    Doucas G 2003 Int. J. Infrar. Millim. Waves 24 6

    [10]

    Chen J W, Fu S F, Zhang D K 1984 Acta Opt. Sin. 4 7 (in Chinese) [陈建文, 傅淑芬, 张大可 1984 光学学报 4 7]

    [11]

    Xiong P F, Wang Y T 1996 High Power Laser and Particle Beams 8 1 (in Chinese) [熊平凡, 王友棠 1996 强激光与粒子束 8 1]

    [12]

    Lu Z G, Wei Y Y, Gong Y B 2006 J. Infrar. Millim Waves 25 5 (in Chinese) [路志刚, 魏彦玉, 宫玉彬 2006 红外与毫米波学报 25 5]

    [13]

    Wang W X, Gong Y B 2007 Acta Phys. Sin. 56 12 (in Chinese) [王文祥, 宫玉彬, 魏彦玉 2007 物理学报 56 12]

    [14]

    Zhang K Q, Li D J 2001 Electromagnetic Theory for Microwaves and Optoelectronics (Beijing: Publishing House of Electronics Industry) p382 (in Chinese) [张克潜, 李德杰 2001 微波与光电子学中的电磁理论 (北京: 电子工业出版社) 第382页]

    [15]

    Liu W X, Yang Z Q 2008 J. Infrar. Millim. Waves 27 2 (in Chinese) [刘文鑫, 杨梓强 2008 红外与毫米波学报 27 2]

    [16]

    McVey B D 1994 Microwave Theory and Techniques IEEE Trans. on 42 6

    [17]

    Joe J, Louis L J, Share J E, Booske J H 1997 Phys. Plasmas 4 12

    [18]

    Joe J, Share J E, Booske J H 1994 Phys. Plasmas 1 1

计量
  • 文章访问数:  4640
  • PDF下载量:  841
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-09-05
  • 修回日期:  2013-10-23
  • 刊出日期:  2014-01-05

/

返回文章
返回