搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

AuPd纳米粒子作为催化剂制备硼纳米线及其场发射性质

杨秀清 胡亦 张景路 王艳秋 裴春梅 刘飞

引用本文:
Citation:

AuPd纳米粒子作为催化剂制备硼纳米线及其场发射性质

杨秀清, 胡亦, 张景路, 王艳秋, 裴春梅, 刘飞

Preparation of boron nanowires using AuPd nanoparticles as catalyst and their field emission behavios

Yang Xiu-Qing, Hu Yi, Zhang Jing-Lu, Wang Yan-Qiu, Pei Chun-Mei, Liu Fei
PDF
导出引用
  • 利用化学气相沉积法,采用不同组分的金属合金纳米粒子AuPd作为催化剂,在Si(111)基底上成功制备大面积、高密度的硼纳米线薄膜. 纳米线的平均长度约为10 μm,直径在50–130 nm之间. 结构分析表明,纳米线为单晶结构,硼纳米线的直径随着元素Pd在合金催化剂中比例的增加而减少. 场发射特性测试结果表明,通过调整催化剂组分可以实现对硼纳米线的尺寸和密度的调控.
    Large-area boron nanowires are successfully prepared by chemical vapor deposition using different compositions of AuPd bimetal nanoparticles as catalysts. The lengths of the boron nanowires are in a range of 5–10 μm and their average diameter is 50 nm. Structural and morphology analysis indicate that these nanowires are single crystalline with a β-rhombohedral structure. The diameters of nanowires gradually decrease with the increase of the concentration of Pd in bimetal nanoparticles. Field emission results show that the field emission properties of boron nanowires can be tuned through using different diameters and densities of boron nanowires.
    • 基金项目: 国家自然科学基金(批准号:50872147)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 50872147).
    [1]

    Iijima S 1991 Nature 354 56

    [2]

    de Heer W A, Chatelain A, Ugarte D 1995 Science 270 1179

    [3]

    Hu J T, Wang T R, Lieber C M 1999 Acc. Chem. Res. 32 435

    [4]

    Wang Z L 2003 Adv. Mater. 15 432

    [5]

    Lu J G, Chang P C, Fan Z Y 2006 Mater. Sci. Eng. R 52 49

    [6]

    Quandt A, Boustani I 2005 Chem. Phys. Chem. 6 2001

    [7]

    Wu J Z, Yun S H, Dibos A, Kim D K, Tidrow M 2003 Microelectronics J. 34 463

    [8]

    Wu Y Y, Messer B, Yang P D 2001 Adv. Mater. 13 1487

    [9]

    Otten C J, Lourie O R, Yu M F, Cowley J M, Dyer M J, Ruoff R S, Buhro W E 2002 J. Am. Chem. Soc. 124 4564

    [10]

    Franz R, Werheit H 1989 Europhys. Lett. 9 145

    [11]

    Boustani I, Quandt A, Herna'ndez E, Rubio A 1999 J. Chem. Phys. 110 3176

    [12]

    Tang H, Ismail-Beigi S 2007 Phys. Rev. Lett. 99 115501

    [13]

    Liu F, Shen C M, Su Z J, Ding X L, Deng S Z, Chen J, Xu N S, Gao H J 2010 J. Mater. Chem. 20 2197

    [14]

    Tian J F, Xu Z C, Shen C M, Liu F, Xu N S, Gao H J 2010 Nanoscale 2 1375

    [15]

    Wang D W, Lu J G, Otten C J, Buhro W E 2003 Appl. Phys. Lett. 83 5280

    [16]

    Cao L M, Zhang Z, Sun L L, He M, Wang Y Q, Li Y C, Zhang X Y, Li G, Zhang J, Wang W K 2001 Adv. Mater. 13 1701

    [17]

    Kirihara K, Wang Z, Kawaguchi K, Shimizu Y, Sasaki T, Koshizaki N, Sogac K, Kimura K 2005 Appl. Phys. Lett. 86 212101

    [18]

    Liu F, Tian J F, Bao L H, Yang T Z, Shen C M, Xu N S, Gao H J 2008 Adv. Mater. 20 2609

    [19]

    Tian J F, Cai J M, Hui C, Zhang C D, Bao L H, Gao M, Shen C M, Gao H J 2008 Appl. Phys. Lett. 93 122105

    [20]

    Bao L H, Li C, Tian Y, Tian J F, Hui C, Wang X J, Shen C M, Gao H J 2008 Chin. Phys. B 17 4585

    [21]

    Wang X J, Tian J F, Yang T Z, Bao L H, Hui C, Shen C M, Gao H J 2007 Adv. Mater. 19 4480

    [22]

    Bao L H, Li C, Tian Y, Tian J F, Hui C, Wang X J, Shen C M, Gao H J 2008 Chin. Phys. B 17 4247

    [23]

    Wang X J, Tian J F, Bao L H, Yang T Z, Hui C, Liu F, Shen C M, Xu N S, Gao H J 2008 Chin. Phys. B 17 3827

    [24]

    Li C, Tian Y, Wang D K, Shi X Z, Hui C, Shen C M, Gao H J 2011 Chin. Phys. B 20 037903

    [25]

    Qian W, Liu T, Wang Z, Yu H, Li Z, Wei F, Luo G 2003 Carbon 41 2487

    [26]

    Tsoufis T, Xidas P, Jankovic L, Gournis D, Saranti A, Bakas T, Karakassides M A 2007 Diamond Rela ted Mater. 16 155

    [27]

    Reyhani A, Mortazavi S Z, Akhavan O, Moshfegh A Z, Lahooti S 2007 Appl. Surf. Sci. 253 8458

    [28]

    Mortazavi S Z, Reyhani A, Irajizad A 2008 Appl. Sur. Sci. 254 6416

    [29]

    Khan Z H, Islam S S, Kung S C, Perng T P, Khan S, Tripathi K N, Agarwal M, Zulfequar M, Husain M 2006 Physica B 373 317

    [30]

    Chen C M, Dai Y M, Huang J G, Jehng J M 2006 Carbon 44 1808

    [31]

    Huang Z P, Wang D Z, Wen J G, Sennett M, Gibson H, Ren Z F 2002 Appl. Phys. A 74 387

    [32]

    Tian Y, Shen C M, Li C, Shi X Z, Huang Y, Gao H J 2011 Nano Res. 4 780

    [33]

    Scott R W J, Wilson O M, Oh S K, Kenik E A, Crooks R M 2004 J. Am. Chem. Soc. 126 15583

    [34]

    Hou W B, Dehm N A, Scott R W J 2008 J. Catal. 253 22

    [35]

    Jiang J H, Kucernak A 2009 Electrochim. Acta 54 4545

    [36]

    Shen C M, Hui C, Yang T Z, Xiao C W, Tian J F, Bao L H, Chen S T, Ding H, Gao H J 2008 Chem. Mater. 20 6939

    [37]

    Chen B, Wu P 2005 Carbon 43 3172

    [38]

    Hart A J, Slocum A H, Royer L 2006 Carbon 44 348

    [39]

    Liu Z Q, Pan Z W, Sun L F, Tang D S, Zhou W Y, Wang G, Qian L X, Xie S S 2000 J. Phys. Chem. Solids 61 1171

    [40]

    Moshfegh A Z 2009 J. Phys. D: Appl. Phys. 42 233001

    [41]

    JCPDS-International Center for Diffraction Data, PCPDFWIN, v.2.1, 2000

    [42]

    Stratton R 1955 Proc. Phys. Soc. B 68 746

    [43]

    Fowler R H, Nordheim L 1928 Roc. Roy. Soc. London A 119 173

    [44]

    Li S Q, Liang Y X, Wang T H 2006 Appl. Phys. Lett. 88 053107

  • [1]

    Iijima S 1991 Nature 354 56

    [2]

    de Heer W A, Chatelain A, Ugarte D 1995 Science 270 1179

    [3]

    Hu J T, Wang T R, Lieber C M 1999 Acc. Chem. Res. 32 435

    [4]

    Wang Z L 2003 Adv. Mater. 15 432

    [5]

    Lu J G, Chang P C, Fan Z Y 2006 Mater. Sci. Eng. R 52 49

    [6]

    Quandt A, Boustani I 2005 Chem. Phys. Chem. 6 2001

    [7]

    Wu J Z, Yun S H, Dibos A, Kim D K, Tidrow M 2003 Microelectronics J. 34 463

    [8]

    Wu Y Y, Messer B, Yang P D 2001 Adv. Mater. 13 1487

    [9]

    Otten C J, Lourie O R, Yu M F, Cowley J M, Dyer M J, Ruoff R S, Buhro W E 2002 J. Am. Chem. Soc. 124 4564

    [10]

    Franz R, Werheit H 1989 Europhys. Lett. 9 145

    [11]

    Boustani I, Quandt A, Herna'ndez E, Rubio A 1999 J. Chem. Phys. 110 3176

    [12]

    Tang H, Ismail-Beigi S 2007 Phys. Rev. Lett. 99 115501

    [13]

    Liu F, Shen C M, Su Z J, Ding X L, Deng S Z, Chen J, Xu N S, Gao H J 2010 J. Mater. Chem. 20 2197

    [14]

    Tian J F, Xu Z C, Shen C M, Liu F, Xu N S, Gao H J 2010 Nanoscale 2 1375

    [15]

    Wang D W, Lu J G, Otten C J, Buhro W E 2003 Appl. Phys. Lett. 83 5280

    [16]

    Cao L M, Zhang Z, Sun L L, He M, Wang Y Q, Li Y C, Zhang X Y, Li G, Zhang J, Wang W K 2001 Adv. Mater. 13 1701

    [17]

    Kirihara K, Wang Z, Kawaguchi K, Shimizu Y, Sasaki T, Koshizaki N, Sogac K, Kimura K 2005 Appl. Phys. Lett. 86 212101

    [18]

    Liu F, Tian J F, Bao L H, Yang T Z, Shen C M, Xu N S, Gao H J 2008 Adv. Mater. 20 2609

    [19]

    Tian J F, Cai J M, Hui C, Zhang C D, Bao L H, Gao M, Shen C M, Gao H J 2008 Appl. Phys. Lett. 93 122105

    [20]

    Bao L H, Li C, Tian Y, Tian J F, Hui C, Wang X J, Shen C M, Gao H J 2008 Chin. Phys. B 17 4585

    [21]

    Wang X J, Tian J F, Yang T Z, Bao L H, Hui C, Shen C M, Gao H J 2007 Adv. Mater. 19 4480

    [22]

    Bao L H, Li C, Tian Y, Tian J F, Hui C, Wang X J, Shen C M, Gao H J 2008 Chin. Phys. B 17 4247

    [23]

    Wang X J, Tian J F, Bao L H, Yang T Z, Hui C, Liu F, Shen C M, Xu N S, Gao H J 2008 Chin. Phys. B 17 3827

    [24]

    Li C, Tian Y, Wang D K, Shi X Z, Hui C, Shen C M, Gao H J 2011 Chin. Phys. B 20 037903

    [25]

    Qian W, Liu T, Wang Z, Yu H, Li Z, Wei F, Luo G 2003 Carbon 41 2487

    [26]

    Tsoufis T, Xidas P, Jankovic L, Gournis D, Saranti A, Bakas T, Karakassides M A 2007 Diamond Rela ted Mater. 16 155

    [27]

    Reyhani A, Mortazavi S Z, Akhavan O, Moshfegh A Z, Lahooti S 2007 Appl. Surf. Sci. 253 8458

    [28]

    Mortazavi S Z, Reyhani A, Irajizad A 2008 Appl. Sur. Sci. 254 6416

    [29]

    Khan Z H, Islam S S, Kung S C, Perng T P, Khan S, Tripathi K N, Agarwal M, Zulfequar M, Husain M 2006 Physica B 373 317

    [30]

    Chen C M, Dai Y M, Huang J G, Jehng J M 2006 Carbon 44 1808

    [31]

    Huang Z P, Wang D Z, Wen J G, Sennett M, Gibson H, Ren Z F 2002 Appl. Phys. A 74 387

    [32]

    Tian Y, Shen C M, Li C, Shi X Z, Huang Y, Gao H J 2011 Nano Res. 4 780

    [33]

    Scott R W J, Wilson O M, Oh S K, Kenik E A, Crooks R M 2004 J. Am. Chem. Soc. 126 15583

    [34]

    Hou W B, Dehm N A, Scott R W J 2008 J. Catal. 253 22

    [35]

    Jiang J H, Kucernak A 2009 Electrochim. Acta 54 4545

    [36]

    Shen C M, Hui C, Yang T Z, Xiao C W, Tian J F, Bao L H, Chen S T, Ding H, Gao H J 2008 Chem. Mater. 20 6939

    [37]

    Chen B, Wu P 2005 Carbon 43 3172

    [38]

    Hart A J, Slocum A H, Royer L 2006 Carbon 44 348

    [39]

    Liu Z Q, Pan Z W, Sun L F, Tang D S, Zhou W Y, Wang G, Qian L X, Xie S S 2000 J. Phys. Chem. Solids 61 1171

    [40]

    Moshfegh A Z 2009 J. Phys. D: Appl. Phys. 42 233001

    [41]

    JCPDS-International Center for Diffraction Data, PCPDFWIN, v.2.1, 2000

    [42]

    Stratton R 1955 Proc. Phys. Soc. B 68 746

    [43]

    Fowler R H, Nordheim L 1928 Roc. Roy. Soc. London A 119 173

    [44]

    Li S Q, Liang Y X, Wang T H 2006 Appl. Phys. Lett. 88 053107

  • [1] 刘怀远, 肖建飞, 吕昭征, 吕力, 屈凡明. Bi2O2Se纳米线的生长及其超导量子干涉器件. 物理学报, 2024, 73(4): 047803. doi: 10.7498/aps.73.20231600
    [2] 杨瑞龙, 张钰樱, 杨柯, 姜琦涛, 杨晓婷, 郭金中, 许小红. 二维钒掺杂Cr2S3纳米片的生长与磁性研究. 物理学报, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20231229
    [3] 杨瑞龙, 张钰樱, 杨柯, 姜琦涛, 杨晓婷, 郭金中, 许小红. 二维钒掺杂Cr2S3纳米片的生长与磁性研究. 物理学报, 2023, 72(24): 247501. doi: 10.7498/aps.72.20231229
    [4] 陈上峰, 孙乃坤, 张宪民, 王凯, 李武, 韩艳, 吴丽君, 岱钦. Mn3As2掺杂Cd3As2纳米结构的制备及热电性能. 物理学报, 2022, 71(18): 187201. doi: 10.7498/aps.71.20220584
    [5] 冯秋菊, 石博, 李昀铮, 王德煜, 高冲, 董增杰, 解金珠, 梁红伟. 单根Sb掺杂ZnO微米线非平衡电桥式气敏传感器的制作与性能. 物理学报, 2020, 69(3): 038102. doi: 10.7498/aps.69.20191530
    [6] 冯秋菊, 李芳, 李彤彤, 李昀铮, 石博, 李梦轲, 梁红伟. 外电场辅助化学气相沉积方法制备网格状β-Ga2O3纳米线及其特性研究. 物理学报, 2018, 67(21): 218101. doi: 10.7498/aps.67.20180805
    [7] 王必本, 朱恪, 王强. Se和MoSe2纳米片的结构和发光性能. 物理学报, 2016, 65(3): 038102. doi: 10.7498/aps.65.038102
    [8] 马立安, 郑永安, 魏朝晖, 胡利勤, 郭太良. 合成温度和N2/O2流量比对碳纤维衬底上生长的SnO2纳米线形貌及场发射性能影响. 物理学报, 2015, 64(23): 237901. doi: 10.7498/aps.64.237901
    [9] 冯秋菊, 许瑞卓, 郭慧颖, 徐坤, 李荣, 陶鹏程, 梁红伟, 刘佳媛, 梅艺赢. 衬底位置对化学气相沉积法制备的磷掺杂p型ZnO纳米材料形貌和特性的影响. 物理学报, 2014, 63(16): 168101. doi: 10.7498/aps.63.168101
    [10] 胡小颖, 王淑敏, 裴艳慧, 田宏伟, 朱品文. 碳纳米片-碳纳米管复合材料的一步合成及其场 发射性质研究. 物理学报, 2013, 62(3): 038101. doi: 10.7498/aps.62.038101
    [11] 张帆, 朱航天, 骆军, 梁敬魁, 饶光辉, 刘泉林. Sb2Te3 纳米结构的制备与表征. 物理学报, 2010, 59(10): 7232-7238. doi: 10.7498/aps.59.7232
    [12] 张 暐, 奚中和, 薛增泉. 石墨基底上垂直生长碳纳米管为芯的碳锥结构. 物理学报, 2007, 56(12): 7165-7169. doi: 10.7498/aps.56.7165
    [13] 韩道丽, 赵元黎, 赵海波, 宋天福, 梁二军. 化学气相沉积法制备定向碳纳米管阵列. 物理学报, 2007, 56(10): 5958-5964. doi: 10.7498/aps.56.5958
    [14] 郭平生, 陈 婷, 曹章轶, 张哲娟, 陈奕卫, 孙 卓. 场致发射阴极碳纳米管的热化学气相沉积法低温生长. 物理学报, 2007, 56(11): 6705-6711. doi: 10.7498/aps.56.6705
    [15] 王必本, 徐幸梓, 张 兵. 等离子体增强热丝CVD生长碳纳米尖端的研究. 物理学报, 2006, 55(2): 941-946. doi: 10.7498/aps.55.941
    [16] 张 萍, 李萍剑, 侯士敏, 张琦锋, 吴锦雷. 碳纳米管氧化成环制备研究. 物理学报, 2005, 54(8): 3734-3739. doi: 10.7498/aps.54.3734
    [17] 李海钧, 顾长志, 窦 艳, 李俊杰. 单根准直碳纳米纤维的场发射特性. 物理学报, 2004, 53(7): 2258-2262. doi: 10.7498/aps.53.2258
    [18] 曾湘波, 廖显伯, 王 博, 刁宏伟, 戴松涛, 向贤碧, 常秀兰, 徐艳月, 胡志华, 郝会颖, 孔光临. 等离子体增强化学气相沉积法实现硅纳米线掺硼. 物理学报, 2004, 53(12): 4410-4413. doi: 10.7498/aps.53.4410
    [19] 闫小琴, 刘祖琴, 唐东升, 慈立杰, 刘东方, 周振平, 梁迎新, 袁华军, 周维亚, 王 刚. 衬底对化学气相沉积法制备氧化硅纳米线的影响. 物理学报, 2003, 52(2): 454-458. doi: 10.7498/aps.52.454
    [20] 陈小华, 吴国涛, 邓福铭, 王健雄, 杨杭生, 王淼, 卢筱楠, 彭景翠, 李文铸. 射频等离子体辅助化学气相沉积方法生长碳纳米洋葱. 物理学报, 2001, 50(7): 1264-1267. doi: 10.7498/aps.50.1264
计量
  • 文章访问数:  5064
  • PDF下载量:  407
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-09-25
  • 修回日期:  2013-10-30
  • 刊出日期:  2014-02-05

/

返回文章
返回