搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

O+DCl→OD+Cl反应的动力学性质研究

许雪松 杨鲲 孙佳石 尹淑慧

引用本文:
Citation:

O+DCl→OD+Cl反应的动力学性质研究

许雪松, 杨鲲, 孙佳石, 尹淑慧

Dynamics for the reaction O+DCl→OD+Cl

Xu Xue-Song, Yang Kun, Sun Jia-Shi, Yin Shu-Hui
PDF
导出引用
  • 利用准经典轨线方法计算了O+DCl→OD+Cl 反应的动力学性质. 所得到的积分反应截面反映出该反应为典型的放热反应,这与势能面反应路径上没有能垒的特点一致. 其微分反应截面的分布表明反应产物的前向散射和后向散射是不对称的,前向散射强于后向散射,因此该反应遵循间接反应机理,此机理通过对反应轨线进行抽样分析得到验证. 反映两矢量K-J’相关的分布函数P(θr)和取向系数2(J’·K)>值的变化趋势均反映出产物分子OD 的取向程度随碰撞能的增加先减弱后增强. 反映三矢量K-K’-J’相关的二面角分布函数P(ør)表明产物分子转动角动量具有沿y 轴的取向效应,当碰撞能较高时出现了比较明显的沿y 轴正向的定向效应. 随着碰撞能的增加,产物分子的转动由“平面内” 机理向“平面外” 机理过渡.
    With the quasi-classical trajectory method the stereodynamics of the O+DCl→OD+Cl reaction on the ground potential energy surface is investigated. The characteristic of calculated integral cross-section is consistent with that of the non-energy barrier reaction path on the potential energy surface, which implies that the title reaction is a typical exothermic reaction. The obtained differential reaction cross-section shows that the products tend to both forward and backward scattering, and the forward scattering is stronger than the backward one. So we can infer that the reaction follows the indirect reaction mechanism that has been verified by the randomly abstractive reaction trajectories. The distribution curves of P(θr) and 2(J'· K)> reflect that the degree of rotational alignment of the product OD first increases and then decreases with collision energy increasing. The product rotational angular momentum vector J' is aligned along the y-axis direction but is oriented along the positive direction of y-axis at higher collision energy. With the increase of the collision energy the rotation mechanism of the product molecules transits from the “in-plane” mechanism to the “out-of-plane” mechanism.
    • 基金项目: 国家自然科学基金(批准号:11304028)和中央高等学校基本科研基金(批准号:3132014228)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11304028) and the Fundamental Scientific Research Foundation for the Central Universities of China (Grant No. 3132014228).
    [1]

    Bernstein R B, Herschbach D R, Levine R D 1987 J. Phys. Chem. 91 5365

    [2]

    Xu G L, Liu P, Liu Y L, Zhang L, Liu Y F 2013 Acta Phys. Sin. 62 223402 (in Chinese)[徐国亮, 刘培, 刘彦磊, 张琳, 刘玉芳 2013 物理学报 62 223402]

    [3]

    Li R J, Han K L, Li F E, Lu R C, He G Z, Lou N Q 1994 Chem. Phys. Lett. 220 281

    [4]

    Hsu D S Y, Herschbach D R 1973 Faraday Discuss. Chem. Soc. 55 116

    [5]

    Tyndall G W, de Vries M S, Cobb C L, Martin R M 1992 Chem. Phys. Lett. 195 279

    [6]

    Li R J, Li F E, Han K L, Lu R C, He G Z, Lou N Q 1993 Proceedings of the International Conference on Lasers and Applications Houston, USA, December 7-10, 1992 p456

    [7]

    Xia W Z, Yu Y J, Yang C L 2012 Acta Phys. Sin. 61 223401 (in Chinese)[夏文泽, 于永江, 杨传路 2012 物理学报 61 223401]

    [8]

    Kramer K H, Bernstein R B 1965 J. Chem. Phys. 42 767

    [9]

    Loesch H J, Remscheid A 1990 J. Chem. Phys. 93 4779

    [10]

    Chen M D, Han K L, Lou N Q 2003 J. Chem. Phys. 118 4463

    [11]

    Wang M L, Han K L, He G Z 1998 J. Chem. Phys. 109 5446

    [12]

    Wang M L, Han K L, He G Z 1998 J. Phys. Chem. A 102 10204

    [13]

    Shafer-Ray N E, Orr-Ewing A J, Zare R N 1995 J. Phys. Chem. 99 7591

    [14]

    Aoiz F J, Herrero V J, Sáez Rábanos V 1992 J. Chem. Phys. 97 7423

    [15]

    Li H, Zheng B, Yin J Q, Meng Q T 2011 Chin. Phys. B 20 123401

    [16]

    Han K L, He G Z, Lou N Q 1996 J. Chem. Phys. 105 8699

    [17]

    Balucani N, Beneventi L, Casavecchia P, Volpi G G 1991 Chem. Phys. Lett. 180 34

    [18]

    Balucani N, Beneventi L, Casavecchia P, Stranges D, Volpi G G 1991 J. Chem. Phys. 94 8611

    [19]

    Zhang R, van der Zande W J, Bronikowski M J, Zare R N 1991 J. Chem. Phys. 94 2704

    [20]

    Mahmud K, Kim J S, Fontijn A 1990 J. Phys. Chem. 94 2994

    [21]

    Rakestraw D J, McKendrick K G, Zare R N 1987 J. Chem. Phys. 87 7341

    [22]

    Park C R, Wiesenfeld J R 1989 Chem. Phys. Lett. 163 230

    [23]

    Kruus E J, Niefe B I, Sloan J J 1988 J. Chem. Phys. 88 985

    [24]

    Schinke R 1984 J. Chem. Phys. 80 5510

    [25]

    Hernandez M L, Redondo C, Laganà A, Ochoa de Aspuru G, Rosi M, Sagamellotti A 1996 J. Chem. Phys. 105 2710

    [26]

    Ge M H, Zheng Y J 2012 Chem. Phys. 392 185

    [27]

    Wei Q, Li T, Zhou B, Wu V W K 2009 J. Mol. Struct.: Theochem. 913 162

    [28]

    Zhu T, Hu G D, Zhang Q G 2010 J. Mol. Struct.: Theochem. 948 36

    [29]

    Ge M H, Zheng Y J 2011 Theor. Chem. Acc. 129 173

    [30]

    Ge M H, Zheng Y J 2012 J. At. Mol. Phys. 29 211 (in Chinese) [葛美华, 郑雨军 2012 原子与分子物理学报 29 211]

    [31]

    Wei Q, Wu V W K, Zhou B 2009 J. Theor. Comput. Chem. 8 1177

    [32]

    Liu H R, Liu X G, Zhu T, Sun H Z, Zhang Q G 2010 J. Theor. Comput. Chem. 9 1033

    [33]

    Peterson K A, Skokov S, Bowman J M 1999 J. Chem. Phys. 111 7446

    [34]

    Skokov S, Peterson K A, Bowman J M 1999 Chem. Phys. Lett. 312 494

    [35]

    Bittererova M, Bowman J M, Peterson K A 2000 J. Chem. Phys. 113 6186

    [36]

    Last I, Baer M 1984 J. Chem. Phys. 80 3246

    [37]

    Sayos R, Hernando J, Hijazo J, Gonzalez M 1999 Phys. Chem. Chem. Phys. 1 947

    [38]

    Sayos R, Hernando J, Francia R, Gonzalez M 2000 Phys. Chem. Chem. Phys. 2 523

    [39]

    Aoiz F J, Banares L, Herrero V J, Sáez Rábanos V, Stark K, Werner H J 1994 Chem. Phys. Lett. 223 215

    [40]

    Bradley K S, Schatz G C 1998 J. Chem. Phys. 108 7994

    [41]

    Wu G S, Schatz G C, Lendvay G, Fang D C, Harding L B 2000 J. Chem. Phys. 113 3150

    [42]

    Zhang X, Han K L 2006 Int. J. Quantum Chem. 106 1815

    [43]

    Li W L, Wang M S, Yang C, Liu W, Sun C, Ren T 2007 Chem. Phys. 337 93

    [44]

    Xu W W, Liu X G, Zhang Q G 2008 Mol. Phys. 106 1787

    [45]

    Brouard M, Lambert H M, Rayner S P, Simons J P 1996 Mol. Phys. 89 403

    [46]

    Duan L H, Zhang W Q, Xu X S, Cong S L, Chen M D 2009 Mol. Phys. 107 2579

  • [1]

    Bernstein R B, Herschbach D R, Levine R D 1987 J. Phys. Chem. 91 5365

    [2]

    Xu G L, Liu P, Liu Y L, Zhang L, Liu Y F 2013 Acta Phys. Sin. 62 223402 (in Chinese)[徐国亮, 刘培, 刘彦磊, 张琳, 刘玉芳 2013 物理学报 62 223402]

    [3]

    Li R J, Han K L, Li F E, Lu R C, He G Z, Lou N Q 1994 Chem. Phys. Lett. 220 281

    [4]

    Hsu D S Y, Herschbach D R 1973 Faraday Discuss. Chem. Soc. 55 116

    [5]

    Tyndall G W, de Vries M S, Cobb C L, Martin R M 1992 Chem. Phys. Lett. 195 279

    [6]

    Li R J, Li F E, Han K L, Lu R C, He G Z, Lou N Q 1993 Proceedings of the International Conference on Lasers and Applications Houston, USA, December 7-10, 1992 p456

    [7]

    Xia W Z, Yu Y J, Yang C L 2012 Acta Phys. Sin. 61 223401 (in Chinese)[夏文泽, 于永江, 杨传路 2012 物理学报 61 223401]

    [8]

    Kramer K H, Bernstein R B 1965 J. Chem. Phys. 42 767

    [9]

    Loesch H J, Remscheid A 1990 J. Chem. Phys. 93 4779

    [10]

    Chen M D, Han K L, Lou N Q 2003 J. Chem. Phys. 118 4463

    [11]

    Wang M L, Han K L, He G Z 1998 J. Chem. Phys. 109 5446

    [12]

    Wang M L, Han K L, He G Z 1998 J. Phys. Chem. A 102 10204

    [13]

    Shafer-Ray N E, Orr-Ewing A J, Zare R N 1995 J. Phys. Chem. 99 7591

    [14]

    Aoiz F J, Herrero V J, Sáez Rábanos V 1992 J. Chem. Phys. 97 7423

    [15]

    Li H, Zheng B, Yin J Q, Meng Q T 2011 Chin. Phys. B 20 123401

    [16]

    Han K L, He G Z, Lou N Q 1996 J. Chem. Phys. 105 8699

    [17]

    Balucani N, Beneventi L, Casavecchia P, Volpi G G 1991 Chem. Phys. Lett. 180 34

    [18]

    Balucani N, Beneventi L, Casavecchia P, Stranges D, Volpi G G 1991 J. Chem. Phys. 94 8611

    [19]

    Zhang R, van der Zande W J, Bronikowski M J, Zare R N 1991 J. Chem. Phys. 94 2704

    [20]

    Mahmud K, Kim J S, Fontijn A 1990 J. Phys. Chem. 94 2994

    [21]

    Rakestraw D J, McKendrick K G, Zare R N 1987 J. Chem. Phys. 87 7341

    [22]

    Park C R, Wiesenfeld J R 1989 Chem. Phys. Lett. 163 230

    [23]

    Kruus E J, Niefe B I, Sloan J J 1988 J. Chem. Phys. 88 985

    [24]

    Schinke R 1984 J. Chem. Phys. 80 5510

    [25]

    Hernandez M L, Redondo C, Laganà A, Ochoa de Aspuru G, Rosi M, Sagamellotti A 1996 J. Chem. Phys. 105 2710

    [26]

    Ge M H, Zheng Y J 2012 Chem. Phys. 392 185

    [27]

    Wei Q, Li T, Zhou B, Wu V W K 2009 J. Mol. Struct.: Theochem. 913 162

    [28]

    Zhu T, Hu G D, Zhang Q G 2010 J. Mol. Struct.: Theochem. 948 36

    [29]

    Ge M H, Zheng Y J 2011 Theor. Chem. Acc. 129 173

    [30]

    Ge M H, Zheng Y J 2012 J. At. Mol. Phys. 29 211 (in Chinese) [葛美华, 郑雨军 2012 原子与分子物理学报 29 211]

    [31]

    Wei Q, Wu V W K, Zhou B 2009 J. Theor. Comput. Chem. 8 1177

    [32]

    Liu H R, Liu X G, Zhu T, Sun H Z, Zhang Q G 2010 J. Theor. Comput. Chem. 9 1033

    [33]

    Peterson K A, Skokov S, Bowman J M 1999 J. Chem. Phys. 111 7446

    [34]

    Skokov S, Peterson K A, Bowman J M 1999 Chem. Phys. Lett. 312 494

    [35]

    Bittererova M, Bowman J M, Peterson K A 2000 J. Chem. Phys. 113 6186

    [36]

    Last I, Baer M 1984 J. Chem. Phys. 80 3246

    [37]

    Sayos R, Hernando J, Hijazo J, Gonzalez M 1999 Phys. Chem. Chem. Phys. 1 947

    [38]

    Sayos R, Hernando J, Francia R, Gonzalez M 2000 Phys. Chem. Chem. Phys. 2 523

    [39]

    Aoiz F J, Banares L, Herrero V J, Sáez Rábanos V, Stark K, Werner H J 1994 Chem. Phys. Lett. 223 215

    [40]

    Bradley K S, Schatz G C 1998 J. Chem. Phys. 108 7994

    [41]

    Wu G S, Schatz G C, Lendvay G, Fang D C, Harding L B 2000 J. Chem. Phys. 113 3150

    [42]

    Zhang X, Han K L 2006 Int. J. Quantum Chem. 106 1815

    [43]

    Li W L, Wang M S, Yang C, Liu W, Sun C, Ren T 2007 Chem. Phys. 337 93

    [44]

    Xu W W, Liu X G, Zhang Q G 2008 Mol. Phys. 106 1787

    [45]

    Brouard M, Lambert H M, Rayner S P, Simons J P 1996 Mol. Phys. 89 403

    [46]

    Duan L H, Zhang W Q, Xu X S, Cong S L, Chen M D 2009 Mol. Phys. 107 2579

  • [1] 朱传新, 秦建国, 郑普, 蒋励, 朱通华, 鹿心鑫. 14 MeV附近191Ir(n,2n)190Ir反应截面实验研究. 物理学报, 2022, 71(19): 192501. doi: 10.7498/aps.71.20220776
    [2] 唐晓平, 和小虎, 周灿华, 杨阳. 反应物分子初始振动激发对H+CH+C++H2反应的影响. 物理学报, 2017, 66(12): 123401. doi: 10.7498/aps.66.123401
    [3] 唐晓平, 周灿华, 和小虎, 于东麒, 杨阳. 碰撞能对H+CH+→C++H2反应立体动力学性质的影响. 物理学报, 2017, 66(2): 023401. doi: 10.7498/aps.66.023401
    [4] 王茗馨, 王美山, 杨传路, 刘佳, 马晓光, 王立志. 同位素效应对H+NH→N+H2反应的立体动力学性质的影响. 物理学报, 2015, 64(4): 043402. doi: 10.7498/aps.64.043402
    [5] 胡梅, 刘新国, 谭瑞山. 碰撞能及反应物振动激发对Ar+H2+→ArH++H反应立体动力学性质的影响. 物理学报, 2014, 63(2): 023402. doi: 10.7498/aps.63.023402
    [6] 马建军. 碰撞能对反应Sr+CH3I→SrI+CH3的立体动力学影响. 物理学报, 2014, 63(6): 063401. doi: 10.7498/aps.63.063401
    [7] 谭瑞山, 刘新国, 胡梅. Li+HF(v = 0–3, j = 0)→LiF+H 反应的立体动力学理论研究. 物理学报, 2013, 62(7): 073105. doi: 10.7498/aps.62.073105
    [8] 徐国亮, 刘培, 刘彦磊, 张琳, 刘玉芳. 准经典轨线法研究交换反应H(D)+SH/SD的动力学性质. 物理学报, 2013, 62(22): 223402. doi: 10.7498/aps.62.223402
    [9] 马建军. 反应物NO的转动激发对反应N(4S)+NO(X2Π)→N2(X3Σg-)+O(3P)影响的立体动力学研究. 物理学报, 2013, 62(2): 023401. doi: 10.7498/aps.62.023401
    [10] 夏文泽, 于永江, 杨传路. 同位素取代和碰撞能对N(4S)+H2反应立体动力学性质的影响. 物理学报, 2012, 61(22): 223401. doi: 10.7498/aps.61.223401
    [11] 李红, 郑斌, 孟庆田. 转动激发对O+HBrOH+Br反应的立体动力学性质的准经典轨线理论研究. 物理学报, 2012, 61(15): 153401. doi: 10.7498/aps.61.153401
    [12] 王平. C+OH(v=0—3, j=0—3)→CO+H反应的准经典轨线研究. 物理学报, 2011, 60(5): 053401. doi: 10.7498/aps.60.053401
    [13] 许燕, 赵娟, 王军, 刘芳, 孟庆田. 碰撞能和同位素取代对H+BrF→HBr+F反应立体动力学影响的理论研究. 物理学报, 2010, 59(6): 3885-3891. doi: 10.7498/aps.59.3885
    [14] 许雪松, 张文芹, 金坤, 尹淑慧. 反应物分子初始振动激发对O+HCl→OH+Cl反应的立体动力学性质的影响. 物理学报, 2010, 59(11): 7808-7814. doi: 10.7498/aps.59.7808
    [15] 刘新国, 孙海竹, 刘会荣, 张庆刚. O++H2及其同位素取代反应的立体动力学研究. 物理学报, 2010, 59(11): 7796-7802. doi: 10.7498/aps.59.7796
    [16] 冯兴, 朱正和, 刘晓亚, 杨向东, 黄玮. SiH2体系的分子反应动力学. 物理学报, 2009, 58(12): 8217-8223. doi: 10.7498/aps.58.8217
    [17] 孔浩, 刘新国, 许文武, 梁景娟, 张庆刚. He+H+2及其同位素取代反应的立体动力学研究. 物理学报, 2009, 58(10): 6926-6931. doi: 10.7498/aps.58.6926
    [18] 陆 晓, 孙小军, 杨永栩. 在独立α集团模型下对敲出反应16O(p,pα)12C和16 O(α,2α)12C的研究. 物理学报, 2003, 52(9): 2131-2134. doi: 10.7498/aps.52.2131
    [19] 孙桂华, 杨向东. H+H2反应截面的全量子力学研究. 物理学报, 2002, 51(3): 506-511. doi: 10.7498/aps.51.506
    [20] 宁振江, 李加兴, 郭忠言, 詹文龙, 王建松, 肖国青, 王全进, 王金川, 王猛, 王建峰, 陈志强. 质子滴线核12N在28Si靶上的核反应总截面测量. 物理学报, 2001, 50(4): 644-648. doi: 10.7498/aps.50.644
计量
  • 文章访问数:  4469
  • PDF下载量:  356
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-12-20
  • 修回日期:  2014-01-23
  • 刊出日期:  2014-05-05

/

返回文章
返回