搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Si(110)和Si(111)衬底上制备InGaN/GaN蓝光发光二极管

刘战辉 张李骊 李庆芳 张荣 修向前 谢自力 单云

引用本文:
Citation:

Si(110)和Si(111)衬底上制备InGaN/GaN蓝光发光二极管

刘战辉, 张李骊, 李庆芳, 张荣, 修向前, 谢自力, 单云

InGaN/GaN blue light emitting diodes grown on Si(110) and Si(111) substrates

Liu Zhan-Hui, Zhang Li-Li, Li Qing-Fang, Zhang Rong, Xiu Xiang-Qian, Xie Zi-Li, Shan Yun
PDF
导出引用
  • 分别在Si(110)和Si(111)衬底上制备了InGaN/GaN多量子阱结构蓝光发光二极管(LED)器件. 利用高分辨X射线衍射、原子力显微镜、室温拉曼光谱和变温光致发光谱对生长的LED结构进行了结构表征. 结果表明,相对于Si(111)上生长LED样品,Si(110)上生长的LED结构晶体质量较好,样品中存在较小的张应力,具有较高的内量子效率. 对制备的LED芯片进行光电特性分析测试表明,两种衬底上制备的LED芯片等效串联电阻相差不大,在大电流注入下内量子效率下降较小;但是,相比于Si(111)上制备LED 芯片,Si(110)上LED芯片具有较小的开启电压和更优异的发光特性. 对LED器件电致发光(EL)发光峰随驱动电流的变化研究发现,由于Si(110)衬底上LED结构中阱层和垒层存在较小的应力/应变而在器件中产生较弱的量子限制斯塔克效应,致使Si(110)上LED 芯片EL 发光峰随驱动电流的蓝移量更小.
    In this paper, InGaN/GaN multiple quantum-well blue light emitting diodes (LEDs) are successfully grown on Si(110) and Si(111) substrates. The micro-structural properties of the LEDs are characterized by means of high-resolution X-ray diffraction, atomic force microscopy, Raman spectra, and temperature dependent photoluminescence measurements. The results show that the sample on Si(110) substrate exhibits the high crystal quality, weak tensile strain, and large internal quantum efficiency. The optoelectronic properties of the LED devices are also investigated. The I-V curves indicate that the LED devices fabricated on Si(110) and Si(111) substrates have similar series resistances and low reverse leakage currents, but the LED devices fabricated on Si(110) substrate possess lower turn-on voltages. The relationship between light output intensity and injection current suggests that the LED device fabricated on Si(110) substrate has a strong light output efficiency. The study on the variation of spectral peak energy with injection current of the LED device reveals that LED device on Si(110) substrate presents a smaller spectral shift range when increasing the injection current. And the smaller spectral shift range reflects the weak quantum-confined Stark effect in the device, which can be attributed to the high crystal quality and weak strain between well layer and barrier film in the LED sample grown on Si(110).
    • 基金项目: 国家自然科学基金青年科学基金(批准号:21203098,2013g130)和南京信息工程大学校科研启动基金(批准号:2013x023)资助的课题.
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos. 21203098, 2013g130) and the Scientific Research Staring Foundation of Nanjing University of Information Science and Technology, China (Grant No. 2013x023).
    [1]

    Crawford M H 2009 IEEE J. Sel. Topics Quantum Electron. 15 1028

    [2]

    Chen W C, Tang H L, Luo P, Ma W W, Xu X D, Qian X B, Jiang D P, Wu F, Wang J Y, Xu J 2014 Acta Phys. Sin. 63 068103 (in Chinese) [陈伟超, 唐惠丽, 罗平, 麻尉蔚, 徐晓东, 钱小波, 姜大朋, 吴锋, 王静雅, 徐军 2014 物理学报 63 068103]

    [3]

    Fenwick W E, Andrew M, Xu T M, Li N, Summers C, Jamil M, Ferguson I T 2009 Appl. Phys. Lett. 94 222105

    [4]

    Dadgar A, Poschenrieder M, Bläsing J, Fehse K, Diez A, Krost A 2002 Appl. Phys. Lett. 80 3670

    [5]

    Kim M H, Do Y G, Kang H C, Noh D Y, Park S J 2001 Appl. Phys. Lett. 79 2713

    [6]

    Cheng K, Leys M, Degroote S, Daele B, Boeykens S, Derluyn J, Germain M, Tendeloo G, Engelen J, Borghs G 2006 J. Electron. Mater. 35 592

    [7]

    Hageman P R, Haffouz S, Kirilyuk V, Grzegorczyk A, Larsen P K 2001 Phys. Status Solidi A 188 523

    [8]

    Li J, Lin J Y, Jiang H X 2006 Appl. Phys. Lett. 88 171909

    [9]

    Liu M L, Min Q S, Ye Z Q 2012 Acta Phys. Sin. 61 178503 (in Chinese) [刘木林, 闵秋实, 叶志清 2012 物理学报 61 178503]

    [10]

    Xiong C B, Jiang F Y, Fang W Q, Wang L, Mo C N, Liu H C 2007 J. Lumin. 122–123 185

    [11]

    Shen X Q, Takahashi T, Kawashima H, Ide T, Shimizu M, Okumura H 2013 Jpn. J. Appl. Phys. 52 08JB05

    [12]

    Dadgar A, Schulze F, Wienecke M, Gadanecz A, Bläsing J, Veit P, Hempel T, Diez A, Christen J, Krost A 2007 New J. Phys. 9 389

    [13]

    Damilano B, Natali F, Brault J, Huault T, Lefebvre D, Tauk R, Frayssinet E, Moreno J C, Cordier Y, Semond F, Chenot S, Massies J 2008 Appl. Phys. Express 1 121101

    [14]

    Xie Z L, Zhang R, Fu D Y, Liu B, Xiu X Q, Hua X M, Zhao H, Chen P, Han P, Shi Y, Zheng Y D 2011 Chin. Phys. B 20 116801

    [15]

    Yang W, He Y F, Liu L, Hu X D 2013 Appl. Phys. Lett. 102 241111

    [16]

    Yin H X, Zhu C R, Shen Y, Yang H F, Liu Z, Gu C Z, Liu B L, Xu X G 2014 Appl. Phys. Lett. 104 061113

    [17]

    Zhong C T, Yu T J, Yan J, Chen Z Z, Zhang G Y 2013 Chin. Phys. B 22 117804

    [18]

    Chen Z X, Ren Y, Xiao G H, Li J T, Chen X, Wang X H, Jin C J, Zhang B J 2014 Chin. Phys. B 23 018502

    [19]

    Li S Q, Wang L, Han Y J, Luo Y, Deng H Q, Qiu J S, Zhang J 2011 Acta Phys. Sin. 60 098107 (in Chinese) [李水清, 汪莱, 韩彦军, 罗毅, 邓和清, 丘建生, 张洁 2011 物理学报 60 098107]

    [20]

    Vickers M E, Kappers M J, Smeeton T M, Thrush E J, Barnard J S, Humphreys C J 2003 J. Appl. Phys. 94 1565

    [21]

    Davydov V Y, Kitaev Y E, Goncharuk I N, Smirnov A N, Graul J, Semchinova O, Uffmann D, Smirnov M B, Mirgorodsky A P, Evarestov R A 1998 Phys. Rev. B 58 12899

    [22]

    Watanabe A, Takeuchi T, Hirosawa K, Amano H, Hiramatsu K, Akasaki I 1993 J. Cryst. Growth 128 391

    [23]

    Takeuchi T, Sota S, Sakai H, Amanoa H, Akasaki I, Kaneko K, Nakagawa S, Yamaoka Y, Yamada N 1998 J. Cryst. Growth 189-190 616

    [24]

    Zhuang R R, Cai P 2013 J. Zhangzhou Normal Univ.(Nat. Sci.) 3 66(in Chinese) [庄榕榕, 蔡平 2013 漳州师范学院学报(自然科学版) 3 66]

    [25]

    Kalliakos S, Lefebvre P, Taliercio T 2003 Phys. Rev. B 67 205307

  • [1]

    Crawford M H 2009 IEEE J. Sel. Topics Quantum Electron. 15 1028

    [2]

    Chen W C, Tang H L, Luo P, Ma W W, Xu X D, Qian X B, Jiang D P, Wu F, Wang J Y, Xu J 2014 Acta Phys. Sin. 63 068103 (in Chinese) [陈伟超, 唐惠丽, 罗平, 麻尉蔚, 徐晓东, 钱小波, 姜大朋, 吴锋, 王静雅, 徐军 2014 物理学报 63 068103]

    [3]

    Fenwick W E, Andrew M, Xu T M, Li N, Summers C, Jamil M, Ferguson I T 2009 Appl. Phys. Lett. 94 222105

    [4]

    Dadgar A, Poschenrieder M, Bläsing J, Fehse K, Diez A, Krost A 2002 Appl. Phys. Lett. 80 3670

    [5]

    Kim M H, Do Y G, Kang H C, Noh D Y, Park S J 2001 Appl. Phys. Lett. 79 2713

    [6]

    Cheng K, Leys M, Degroote S, Daele B, Boeykens S, Derluyn J, Germain M, Tendeloo G, Engelen J, Borghs G 2006 J. Electron. Mater. 35 592

    [7]

    Hageman P R, Haffouz S, Kirilyuk V, Grzegorczyk A, Larsen P K 2001 Phys. Status Solidi A 188 523

    [8]

    Li J, Lin J Y, Jiang H X 2006 Appl. Phys. Lett. 88 171909

    [9]

    Liu M L, Min Q S, Ye Z Q 2012 Acta Phys. Sin. 61 178503 (in Chinese) [刘木林, 闵秋实, 叶志清 2012 物理学报 61 178503]

    [10]

    Xiong C B, Jiang F Y, Fang W Q, Wang L, Mo C N, Liu H C 2007 J. Lumin. 122–123 185

    [11]

    Shen X Q, Takahashi T, Kawashima H, Ide T, Shimizu M, Okumura H 2013 Jpn. J. Appl. Phys. 52 08JB05

    [12]

    Dadgar A, Schulze F, Wienecke M, Gadanecz A, Bläsing J, Veit P, Hempel T, Diez A, Christen J, Krost A 2007 New J. Phys. 9 389

    [13]

    Damilano B, Natali F, Brault J, Huault T, Lefebvre D, Tauk R, Frayssinet E, Moreno J C, Cordier Y, Semond F, Chenot S, Massies J 2008 Appl. Phys. Express 1 121101

    [14]

    Xie Z L, Zhang R, Fu D Y, Liu B, Xiu X Q, Hua X M, Zhao H, Chen P, Han P, Shi Y, Zheng Y D 2011 Chin. Phys. B 20 116801

    [15]

    Yang W, He Y F, Liu L, Hu X D 2013 Appl. Phys. Lett. 102 241111

    [16]

    Yin H X, Zhu C R, Shen Y, Yang H F, Liu Z, Gu C Z, Liu B L, Xu X G 2014 Appl. Phys. Lett. 104 061113

    [17]

    Zhong C T, Yu T J, Yan J, Chen Z Z, Zhang G Y 2013 Chin. Phys. B 22 117804

    [18]

    Chen Z X, Ren Y, Xiao G H, Li J T, Chen X, Wang X H, Jin C J, Zhang B J 2014 Chin. Phys. B 23 018502

    [19]

    Li S Q, Wang L, Han Y J, Luo Y, Deng H Q, Qiu J S, Zhang J 2011 Acta Phys. Sin. 60 098107 (in Chinese) [李水清, 汪莱, 韩彦军, 罗毅, 邓和清, 丘建生, 张洁 2011 物理学报 60 098107]

    [20]

    Vickers M E, Kappers M J, Smeeton T M, Thrush E J, Barnard J S, Humphreys C J 2003 J. Appl. Phys. 94 1565

    [21]

    Davydov V Y, Kitaev Y E, Goncharuk I N, Smirnov A N, Graul J, Semchinova O, Uffmann D, Smirnov M B, Mirgorodsky A P, Evarestov R A 1998 Phys. Rev. B 58 12899

    [22]

    Watanabe A, Takeuchi T, Hirosawa K, Amano H, Hiramatsu K, Akasaki I 1993 J. Cryst. Growth 128 391

    [23]

    Takeuchi T, Sota S, Sakai H, Amanoa H, Akasaki I, Kaneko K, Nakagawa S, Yamaoka Y, Yamada N 1998 J. Cryst. Growth 189-190 616

    [24]

    Zhuang R R, Cai P 2013 J. Zhangzhou Normal Univ.(Nat. Sci.) 3 66(in Chinese) [庄榕榕, 蔡平 2013 漳州师范学院学报(自然科学版) 3 66]

    [25]

    Kalliakos S, Lefebvre P, Taliercio T 2003 Phys. Rev. B 67 205307

  • [1] 黄伟, 李跃龙, 任慧志, 王鹏阳, 魏长春, 侯国付, 张德坤, 许盛之, 王广才, 赵颖, 袁明鉴, 张晓丹. 基于N型纳米晶硅氧电子注入层的钙钛矿发光二极管. 物理学报, 2019, 68(12): 128103. doi: 10.7498/aps.68.20190258
    [2] 封波, 邓彪, 刘乐功, 李增成, 冯美鑫, 赵汉民, 孙钱. 等离子体表面处理对硅衬底GaN基蓝光发光二极管内置n型欧姆接触的影响. 物理学报, 2017, 66(4): 047801. doi: 10.7498/aps.66.047801
    [3] 时强, 李路平, 张勇辉, 张紫辉, 毕文刚. GaN/InxGa1-xN型最后一个量子势垒对发光二极管内量子效率的影响. 物理学报, 2017, 66(15): 158501. doi: 10.7498/aps.66.158501
    [4] 王党会, 许天旱, 王荣, 雒设计, 姚婷珍. InGaN/GaN多量子阱结构发光二极管发光机理转变的低频电流噪声表征. 物理学报, 2015, 64(5): 050701. doi: 10.7498/aps.64.050701
    [5] 张超宇, 熊传兵, 汤英文, 黄斌斌, 黄基锋, 王光绪, 刘军林, 江风益. 图形硅衬底GaN基发光二极管薄膜去除衬底及AlN缓冲层后单个图形内微区发光及 应力变化的研究. 物理学报, 2015, 64(18): 187801. doi: 10.7498/aps.64.187801
    [6] 陈伟超, 唐慧丽, 罗平, 麻尉蔚, 徐晓东, 钱小波, 姜大朋, 吴锋, 王静雅, 徐军. GaN基发光二极管衬底材料的研究进展. 物理学报, 2014, 63(6): 068103. doi: 10.7498/aps.63.068103
    [7] 陈新莲, 孔凡敏, 李康, 高晖, 岳庆炀. 无序光子晶体提高GaN基蓝光发光二极管光提取效率的研究. 物理学报, 2013, 62(1): 017805. doi: 10.7498/aps.62.017805
    [8] 王光绪, 陶喜霞, 熊传兵, 刘军林, 封飞飞, 张萌, 江风益. 牺牲Ni退火对硅衬底GaN基发光二极管p型接触影响的研究. 物理学报, 2011, 60(7): 078503. doi: 10.7498/aps.60.078503
    [9] 薛正群, 黄生荣, 张保平, 陈朝. 激光诱导p-GaN掺杂对发光二极管性能改善的分析. 物理学报, 2010, 59(2): 1268-1274. doi: 10.7498/aps.59.1268
    [10] 封飞飞, 刘军林, 邱冲, 王光绪, 江风益. 硅衬底GaN基LED N极性n型欧姆接触研究. 物理学报, 2010, 59(8): 5706-5709. doi: 10.7498/aps.59.5706
    [11] 朱丽虹, 蔡加法, 李晓莹, 邓彪, 刘宝林. In组分渐变提高InGaN/GaN多量子阱发光二极管发光性能. 物理学报, 2010, 59(7): 4996-5001. doi: 10.7498/aps.59.4996
    [12] 李炳乾, 郑同场, 夏正浩. GaN基蓝光发光二极管正向电压温度特性研究. 物理学报, 2009, 58(10): 7189-7193. doi: 10.7498/aps.58.7189
    [13] 李为军, 张波, 徐文兰, 陆卫. InGaN/GaN多量子阱蓝色发光二极管的实验与模拟分析. 物理学报, 2009, 58(5): 3421-3426. doi: 10.7498/aps.58.3421
    [14] 林瀚, 刘守, 张向苏, 刘宝林, 任雪畅. 全息技术制作二维光子晶体蓝宝石衬底提高发光二极管外量子效率. 物理学报, 2009, 58(2): 959-963. doi: 10.7498/aps.58.959
    [15] 沈光地, 张剑铭, 邹德恕, 徐 晨, 顾晓玲. 大功率GaN基发光二极管的电流扩展效应及电极结构优化研究. 物理学报, 2008, 57(1): 472-476. doi: 10.7498/aps.57.472
    [16] 熊传兵, 江风益, 王 立, 方文卿, 莫春兰. 硅衬底垂直结构InGaAlN多量子阱发光二极管电致发光谱的干涉现象研究. 物理学报, 2008, 57(12): 7860-7864. doi: 10.7498/aps.57.7860
    [17] 熊传兵, 江风益, 方文卿, 王 立, 莫春兰. 硅衬底GaN蓝色发光材料转移前后应力变化研究. 物理学报, 2008, 57(5): 3176-3181. doi: 10.7498/aps.57.3176
    [18] 张剑铭, 邹德恕, 徐 晨, 顾晓玲, 沈光地. 电极结构优化对大功率GaN基发光二极管性能的影响. 物理学报, 2007, 56(10): 6003-6007. doi: 10.7498/aps.56.6003
    [19] 邢艳辉, 韩 军, 刘建平, 邓 军, 牛南辉, 沈光地. 垒掺In提高InGaN/GaN多量子阱发光特性. 物理学报, 2007, 56(12): 7295-7299. doi: 10.7498/aps.56.7295
    [20] 徐耿钊, 梁 琥, 白永强, 刘纪美, 朱 星. 低温近场光学显微术对InGaN/GaN多量子阱电致发光温度特性的研究. 物理学报, 2005, 54(11): 5344-5349. doi: 10.7498/aps.54.5344
计量
  • 文章访问数:  5886
  • PDF下载量:  14034
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-05-08
  • 修回日期:  2014-06-09
  • 刊出日期:  2014-10-05

/

返回文章
返回