搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维胶体玻璃中玻色峰与结构无序度的关联

刘海霞 陈科 厚美瑛

引用本文:
Citation:

二维胶体玻璃中玻色峰与结构无序度的关联

刘海霞, 陈科, 厚美瑛

Boson peaks in doped colloid glasses

Liu Hai-Xia, Chen Ke, Hou Mei-Ying
PDF
导出引用
  • 本文从实验上研究了胶体玻璃在相同面密度下随着体系结构无序程度的增加, 振动态密度和玻色峰的变化规律. 通过调制两种不同粒径的温敏性水凝胶的数量比来改变体系的无序程度. 通过分析无序体系的声子模式得到体系的振动特性. 研究发现, 随着无序度的增加, 态密度在低频区域增强、玻色峰增高、玻色峰的峰值向低频区域移动. 不同无序程度的样品引起玻色峰的低频声子模式都表现出准局域的特点, 且低频准局域声子模式与样品中无序结构存在关联.
    We experimentally investigated the correlation between local structures and phonon modes in quasi-2D colloidal glasses. The glass samples consist of thermo-sensitive poly-N-isopropylacrylamide microgel (PNIPAM) particles, whose diameter can be tuned by small changes of sample temperature. A binary mixture of these particles is confined between two coverslips and forms a monolayer of quasi-2D glass. By changing the number ratio between large and small particles, the structure or the overall degree of disorder of the samples can be systematically tuned. We employ a video microscopy to record the motion of the colloidal particles in the sample for 11 min at a rate of 60 fps. The trajectories of individual particles are obtained by particle tracking software. Dynamical matrix is constructed using covariance matrix analysis, from which the eigenfrequency and eigenvector of vibrations are extracted. In this study, we focus on the evolution of the low-frequency quasi-localized phonon modes in glasses, as the system becomes more and more disordered from the increased dopants. To compare the results from different samples, we choose those with packing fraction of 86%, and rescale the eigenfrequencies by the median frequency of each sample. For the four doping levels investigated (2%, 9%, 29%, 61%), the density of states at low frequencies increases with the doping level, suggesting that the fraction of low-frequency modes increases with disorder, which is corroborated by the higher boson peaks at higher dopant fractions. We have measured the participation ratio of the obtained phonon modes, and find that the boson peak corresponds to quasi-localized vibration modes, or soft modes. We also examine the correlation between the soft modes and local structural parameter. Specifically, we have calculated the local orientational order parameter in our samples, and computed the correlation coefficients between the relative amplitude and the local orientational order parameter for each mode. The soft modes are found to have a significantly negative correlation with the local orientational order parameter, which implies that the soft modes are concentrated in regions with poor local order. We therefore conclude that the local disorder is probably the structural origin of soft modes in glasses.
    • 基金项目: 国家自然科学基金重点项目(批准号:11034010)、国家自然科学基金(批准号:11274354,11474327)、地震行业科研经费(批准号:201208011)、中国科学院空间科学战略性先导科技专项(批准号:XDA04020200)和"中国千人计划(青年类)"资助的课题.
    • Funds: Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 11034010), the National Natural Science Foundation of China (Grant Nos. 11274354, 11474327), the Special Fund for Earthquake Research of China (Grant No. 201208011), the Chinese Academy of Sciences “Strategic Priority Research Program-SJ-10” (Grant No. XDA04020200), and “The Recruitment Program of Global Youth Experts”.
    [1]

    Xu N, Vitelli V, Liu A J, Nagel S R 2010 Europhys. Lett. 90 56001

    [2]

    Chen K, Ellenbroek W G, Zhang Z X, Chen D T N, Yunker P J, Henkes S, Brito C, Dauchot O, Saarloos W V, Liu A J, Yodh A G 2010 Phys. Rev. Lett. 105 025501

    [3]

    Liu H M, Lu C L, Wang K F, Liu J M, Wang Q, Dong C 2010 Chin. Phys. B 19 017102

    [4]

    Pohl R O, Liu X, Thompson E 2002 Rev. Mod. Phys. 74 991

    [5]

    Zhang Z X, Xu N, Chen D T N, Yunker P, Alsayed A M, Aptowicz K B, Habdas P, Liu A J, Nagel S R, Yodh A G 2009 Nature 459 230

    [6]

    Ghosh A, Chikkadi V K, Schall P, Kurchan J, Bonn D 2010 Phys. Rev. Lett. 104 248305

    [7]

    Kaya D, Green N L, Maloney C E, Islam M F 2010 Science 329 656

    [8]

    Chumakov A I, Monaco G, Monaco A, Crichton W A, Bosak A, Rffer R, Meyer A, Kargl F, Comez L, Fioretto D, Giefers H, Roitsch S, Wortmann G, Manghnani M H, Hushur A, Williams Q, Balogh J, Parliński K, Jochym P, Piekarz P 2011 Phys. Rev. Lett. 106 225501

    [9]

    Graebner J E, Golding B 1979 Phys. Rev. B 19 964

    [10]

    Xu N 2011 Front. Phys. China 6 109

    [11]

    Souslov A, Liu A J, Lubensky T C 2009 Phys. Rev. Lett. 103 205503

    [12]

    Mao X M, Xu N, Lubensky T C 2010 Phys. Rev. Lett. 104 085504

    [13]

    Hiltner P A, Krieger I M 1969 J. Phys. Chem. 73 2386

    [14]

    Hiltner P A, Papir Y S, Krieger I M 1971 J. Phys. Chem. 75 1881

    [15]

    Kose A, Ozaki M, Takano K, Kobayashi Y, Hachisu S 1973 J. Colloid Interface Sci. 44 330

    [16]

    Lu K Q, Liu J X 2006 Introduction to soft Matter Physics (Beijing:Pecking University Press) p309 (in Chinese) [陆坤全, 刘寄星 2006 软物质物理学导论(北京:北京大学出版社) 第309页]

    [17]

    Tan P, Xu N, Schofield A B, Xu L 2012 Phys. Rev. Lett. 108 095501

    [18]

    Shintani H, Tanaka H 2008 Nature Mater. 7 870

    [19]

    Shintani H, Tanaka H 2006 Nature Phys. 2 200

    [20]

    Saunders B R, Vincent B 1999 Adv. Colloid Interface Sci. 80 1

    [21]

    Pelton R 2000 Adv. Colloid Interface Sci. 85 1

    [22]

    Still T, Chen K, Alsayed A M, Aptowicz K B, Yodh A G 2013 J. Colloid Interface Sci. 405 96

    [23]

    Wyart M 2005 Ann. Phys. (Paris) 30 1

    [24]

    Xu N, Wyart M, Liu A J, Nagel S R 2007 Phys. Rev. Lett. 98 175502

    [25]

    Wyart M, Liang H, Kabla A, Mahadevan L 2008 Phys. Rev. Lett. 101 215501

    [26]

    Crocker J C, Grier D G 1996 J. Colloid Interface Sci. 179 298

    [27]

    Yunker P, Chen K, Zhang Z X, Yodh A G 2011 Phys. Rev. Lett. 106 225503

    [28]

    Chen K, Still T, Schoenholz S, Aptowicz K B, Schindler M, Maggs A C, Liu A J, Yodh A G 2013 Phys. Rev. E 88 022315

    [29]

    Zhang G H, Sun Q C, Shi Z P, Feng X, Gu Q, Jin F 2014 Chin. Phys. B 23 076301

  • [1]

    Xu N, Vitelli V, Liu A J, Nagel S R 2010 Europhys. Lett. 90 56001

    [2]

    Chen K, Ellenbroek W G, Zhang Z X, Chen D T N, Yunker P J, Henkes S, Brito C, Dauchot O, Saarloos W V, Liu A J, Yodh A G 2010 Phys. Rev. Lett. 105 025501

    [3]

    Liu H M, Lu C L, Wang K F, Liu J M, Wang Q, Dong C 2010 Chin. Phys. B 19 017102

    [4]

    Pohl R O, Liu X, Thompson E 2002 Rev. Mod. Phys. 74 991

    [5]

    Zhang Z X, Xu N, Chen D T N, Yunker P, Alsayed A M, Aptowicz K B, Habdas P, Liu A J, Nagel S R, Yodh A G 2009 Nature 459 230

    [6]

    Ghosh A, Chikkadi V K, Schall P, Kurchan J, Bonn D 2010 Phys. Rev. Lett. 104 248305

    [7]

    Kaya D, Green N L, Maloney C E, Islam M F 2010 Science 329 656

    [8]

    Chumakov A I, Monaco G, Monaco A, Crichton W A, Bosak A, Rffer R, Meyer A, Kargl F, Comez L, Fioretto D, Giefers H, Roitsch S, Wortmann G, Manghnani M H, Hushur A, Williams Q, Balogh J, Parliński K, Jochym P, Piekarz P 2011 Phys. Rev. Lett. 106 225501

    [9]

    Graebner J E, Golding B 1979 Phys. Rev. B 19 964

    [10]

    Xu N 2011 Front. Phys. China 6 109

    [11]

    Souslov A, Liu A J, Lubensky T C 2009 Phys. Rev. Lett. 103 205503

    [12]

    Mao X M, Xu N, Lubensky T C 2010 Phys. Rev. Lett. 104 085504

    [13]

    Hiltner P A, Krieger I M 1969 J. Phys. Chem. 73 2386

    [14]

    Hiltner P A, Papir Y S, Krieger I M 1971 J. Phys. Chem. 75 1881

    [15]

    Kose A, Ozaki M, Takano K, Kobayashi Y, Hachisu S 1973 J. Colloid Interface Sci. 44 330

    [16]

    Lu K Q, Liu J X 2006 Introduction to soft Matter Physics (Beijing:Pecking University Press) p309 (in Chinese) [陆坤全, 刘寄星 2006 软物质物理学导论(北京:北京大学出版社) 第309页]

    [17]

    Tan P, Xu N, Schofield A B, Xu L 2012 Phys. Rev. Lett. 108 095501

    [18]

    Shintani H, Tanaka H 2008 Nature Mater. 7 870

    [19]

    Shintani H, Tanaka H 2006 Nature Phys. 2 200

    [20]

    Saunders B R, Vincent B 1999 Adv. Colloid Interface Sci. 80 1

    [21]

    Pelton R 2000 Adv. Colloid Interface Sci. 85 1

    [22]

    Still T, Chen K, Alsayed A M, Aptowicz K B, Yodh A G 2013 J. Colloid Interface Sci. 405 96

    [23]

    Wyart M 2005 Ann. Phys. (Paris) 30 1

    [24]

    Xu N, Wyart M, Liu A J, Nagel S R 2007 Phys. Rev. Lett. 98 175502

    [25]

    Wyart M, Liang H, Kabla A, Mahadevan L 2008 Phys. Rev. Lett. 101 215501

    [26]

    Crocker J C, Grier D G 1996 J. Colloid Interface Sci. 179 298

    [27]

    Yunker P, Chen K, Zhang Z X, Yodh A G 2011 Phys. Rev. Lett. 106 225503

    [28]

    Chen K, Still T, Schoenholz S, Aptowicz K B, Schindler M, Maggs A C, Liu A J, Yodh A G 2013 Phys. Rev. E 88 022315

    [29]

    Zhang G H, Sun Q C, Shi Z P, Feng X, Gu Q, Jin F 2014 Chin. Phys. B 23 076301

  • [1] 覃俭. 光源相位噪声对高斯玻色采样的影响. 物理学报, 2023, 72(5): 050302. doi: 10.7498/aps.72.20221766
    [2] 贺丽, 张天琪, 李可芯, 余增强. 双组分玻色-爱因斯坦凝聚体的混溶性. 物理学报, 2023, 72(11): 110302. doi: 10.7498/aps.72.20230001
    [3] 王青青, 周玉珊, 王静, 樊小贝, 邵凯花, 赵月星, 宋燕, 石玉仁. 三体作用下准一维玻色-爱因斯坦凝聚体中表面带隙孤子及其稳定性. 物理学报, 2023, 72(10): 100308. doi: 10.7498/aps.72.20222195
    [4] 唐娜, 杨雪滢, 宋琳, 张娟, 李晓霖, 周志坤, 石玉仁. 三体相互作用下准一维玻色-爱因斯坦凝聚体中的带隙孤子及其稳定性. 物理学报, 2020, 69(1): 010301. doi: 10.7498/aps.69.20191278
    [5] 周强, 林树培, 张朴, 陈学文. 旋转对称表面等离激元结构中极端局域光场的准正则模式分析. 物理学报, 2019, 68(14): 147104. doi: 10.7498/aps.68.20190434
    [6] 孙艳丽, 王华光, 张泽新. 椭球与圆球混合胶体体系的玻璃化转变. 物理学报, 2018, 67(10): 106401. doi: 10.7498/aps.67.20180264
    [7] 牛晓娜, 张国华, 孙其诚, 赵雪丹, 董远湘. 二维有摩擦颗粒体系振动态密度与玻色峰的研究. 物理学报, 2016, 65(3): 036301. doi: 10.7498/aps.65.036301
    [8] 徐岩, 樊炜, 陈兵, 南向红, 陈达, 周强, 张鲁殷. 自由膨胀准二维玻色-爱因斯坦凝聚中的密度-密度关联. 物理学报, 2013, 62(21): 216701. doi: 10.7498/aps.62.216701
    [9] 王海雷, 杨世平. 三势阱中玻色-爱因斯坦凝聚的开关特性. 物理学报, 2008, 57(8): 4700-4705. doi: 10.7498/aps.57.4700
    [10] 王志霞, 张喜和, 沈 柯. 玻色-爱因斯坦凝聚中的混沌反控制. 物理学报, 2008, 57(12): 7586-7590. doi: 10.7498/aps.57.7586
    [11] 徐志君, 王冬梅, 李 珍. 一维光晶格中玻色凝聚气体的干涉. 物理学报, 2007, 56(6): 3076-3082. doi: 10.7498/aps.56.3076
    [12] 徐秀玮, 任廷琦, 迟永江, 朱友良, 刘姝延. 多模玻色二次多项式型系统的特性函数和准概率分布函数. 物理学报, 2006, 55(8): 3892-3897. doi: 10.7498/aps.55.3892
    [13] 李兴华, 杨亚天. 氢原子波函数的玻色算子表示. 物理学报, 2005, 54(1): 12-17. doi: 10.7498/aps.54.12
    [14] 何拥军, 苏惠敏, 唐芳琼, 董鹏, 汪河洲. 准完全带隙胶体非晶光子晶体. 物理学报, 2001, 50(5): 892-896. doi: 10.7498/aps.50.892
    [15] 刘文森, 马桂荣, 张九安, 梁九卿. 量子玻色流体中的压缩玻色子对数态. 物理学报, 1997, 46(9): 1699-1709. doi: 10.7498/aps.46.1699
    [16] 黄洪斌. 非平衡玻色凝结的相干态处理. 物理学报, 1993, 42(9): 1385-1394. doi: 10.7498/aps.42.1385
    [17] 李文铸, 吴建斌, 陈锋, 程开甲. 准二维玻色凝聚、氧空位、高温超导. 物理学报, 1989, 38(7): 1199-1204. doi: 10.7498/aps.38.1199
    [18] 王国梁. 玻色型元激发对玻璃低温热学性质的影响. 物理学报, 1989, 38(6): 1005-1011. doi: 10.7498/aps.38.1005
    [19] 雷为国, 印保忠, 黄熙怀. 玻璃中CuClxBr1-x(x=0—1)胶体的激子光谱. 物理学报, 1986, 35(11): 1537-1541. doi: 10.7498/aps.35.1537
    [20] 曹忠胜, 刘福绥, 赵忠贤. 金属玻璃低温电阻的准粒子无序构形激发模型. 物理学报, 1985, 34(5): 694-699. doi: 10.7498/aps.34.694
计量
  • 文章访问数:  5152
  • PDF下载量:  654
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-08
  • 修回日期:  2014-12-23
  • 刊出日期:  2015-06-05

/

返回文章
返回