搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

力和扩散机理下外延形貌的演化分析

陈振飞 冯露 赵洋 齐红蕊

引用本文:
Citation:

力和扩散机理下外延形貌的演化分析

陈振飞, 冯露, 赵洋, 齐红蕊

Analysis of epitaxial morphology evolution due to stress and diffusion

Chen Zhen-Fei, Feng Lu, Zhao Yang, Qi Hong-Rui
PDF
导出引用
  • 本文提出了一个新的基于扩散界面的相场模型来描述外延生长中岛的形核、生长及熟化过程. 该模型同时考虑了弹性场、表面能、沉积、扩散、解吸和能量势垒等热力学及动力学过程对表面纳米形貌的影响. 采用经典的BCF模型来描述生长中的扩散形核过程, 而采用一个新的包含弹性应变能的自由能函数, 通过变分得到一个描述多层岛生长的相场方程, 该方法可以有效地描述外延生长中复杂的外延形貌. 采用有限差分格式对非线性耦合方程组进行求解. 数值结果显示, 该模型可以真实地再现外延生长中多层岛结构(即山丘状形貌)的演化过程, 模拟结果与已有实验结果一致. 同时模拟了生长过程中随外延形貌演化而形成的复杂生长应力, 研究表明, 在生长过程中, 岛中存在着复杂的应力分布, 且在岛边界处应力达到局部最大, 这与实验结果定性一致. 此外, 本文的重要发现是, 外延生长中的应力演化明显地影响原子的扩散过程, 当应力存在时, 外延结构变化较无弹性场时变快. 该项研究对理解外延生长中各物理机理的协同作用有重要的指导意义.
    In this paper, a new phase-field model based on diffusion interface is put forward to describe the epitaxial growth including island nucleation, growth, and ripening. Thermodynamics and kinetics play an important role in epitaxial morphology evolution. This model includes combined effects of the following processes, such as elastic field, surface energy, deposition, diffusion, desorption, and energy barrier etc. We use the classical BCF model to describe the atomic diffusion and nucleation processes, and use a new free energy function, including elastic strain energy, to obtain a phase-field equation that can describe the growth of dynamic multi-island by variation method. This model can effectively simulates the complex morphology in epitaxial growth. The nonlinear coupled equations can be solved by finite difference scheme. Numerical result shows that this model can reproduce the real multilayer epitaxial growth structure, and the simulation results are consistent with the experimental results. At the same time we also simulate the complex growth stress with morphology evolution. Results show that, accompanied with the epitaxial growth, a complex stress distribution is produced, and the stress reaches a local maximum on the boundaries of the island, which is consistent with the experimental results. Most importantly, the stress significantly affects the atomic diffusion process. While the stress exists, the epitaxial structure will change faster. These results can make a significance effect on the research of physical mechanism in epitaxial growth.
    • 基金项目: 国家自然科学基金(批准号:11272231,11072169)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11272231, 11072169).
    [1]

    Capper P, Mauk M 2007 Liquid Phase Epitaxy of Electronic Optical and Optoelectronic Materials(West Sussex:Wiley) p16

    [2]

    Peng J, Xu Z M, Wu X F, Sun T Y 2013 Acta Phys. Sin. 62 036104 (in Chinese) [彭静, 徐智谋, 吴小峰, 孙堂友 2013 物理学报 62 036104]

    [3]

    Wang E G 2003 Progress in Physics 23 1( in Chinese) [王恩哥 2003 物理学进展 23 1]

    [4]

    Maggic X, Michael C, Judy L H 2007 Semicond. Sci. Technol. 22 55

    [5]

    Zhang B C, Zhou X, Luo Z J, Ding Z 2012 Chin. Phys. B 21 048101

    [6]

    Hohenberg P, Kohn W 1964 Phys. Rev. B 136 864

    [7]

    Silvio P, Enrico B, Giorgia B, Michal V, Marcel M, Stefano C 2012 Theor. Chem. Acc. 131 1274

    [8]

    Andrea C L, Miroslav K 1997 J. Phys. Condens. Matter 9 299

    [9]

    Wang X P, Xie F, Shi Q W, Zhao T X 2004 Acta Phys. Sin. 53 2699 (in Chinese) [王晓平, 谢峰, 石勤伟, 赵特秀 2004 物理学报 53 2699]

    [10]

    Chen C, Chen Z, Zhang J, Yang T 2012 Acta Phys. Sin. 61 108103 (in Chinese) [陈成, 陈铮, 张静, 杨涛 2012 物理学报 61 108103]

    [11]

    Yu Y M, Liu B G 2004 Phys. Rev. E 69 021601

    [12]

    Fan M, Andrew Z 2010 Phys. Rev. B 81 235431

    [13]

    Burton W, Cabrera N, Frank F 1951 Philos. Trans. R. Soc. Lond. Ser. A 243 299

    [14]

    A Rötz, A Voigt 2004 App. Anal. 83 1015

    [15]

    Hu Z Z, Li S W, Lowengrub J S 2007 Phys. D 233 151

    [16]

    Adam Li, Feng Liu, Lagally M G 2000 Phy. Rev. Lett. 85 091922

    [17]

    Shchukin V A, Bimbery D 2003 Phy. Rev. Lett. 90 076102

    [18]

    Ni Y, He L H, Song J 2004 Surface Science 553 189

    [19]

    Grridhar N, Jacques G A 2006 Phy. Rev. B 73 045409

    [20]

    Li M Z, Yao Y G, Wu B, Zhang Z Y, Wang E G 2009 Euro Physics Letters 86 16001

    [21]

    Xu Y C, Liu B G 2009 Phys. B 404 4303

    [22]

    Uehara T, Fukuib M, Ohno N 2008 Journal of Crystal Growth 310 1331

    [23]

    Evans J W, Thiel P A, Bartelt M C 2006 Surface Science Reports 61 1-128

    [24]

    Kim S H, Kim J Y, Yu J, Lee T Y 2004 Journal of Electronic Materials 33 948

    [25]

    Ioannou-Sougleridis V, Constantoudisa V, Alexeb M, Scholz R, Vellianitisc G, Dimoulas A 2004 Thin Solid Films 468 303

    [26]

    Dai J L 2009 Electronic Components and Materials 28(7) 0033 (in Chinese) [戴结林 2009 电子元件与材料 28(7) 0033]

    [27]

    Davood R, Ahmad K, Hamid R F, Amir S H R 2007 Appl. Surf. Sci. 253 9085

    [28]

    Ernst H J, Fabre F, Folkerts R 1994 Phys. Rev. Lett. 72 112

  • [1]

    Capper P, Mauk M 2007 Liquid Phase Epitaxy of Electronic Optical and Optoelectronic Materials(West Sussex:Wiley) p16

    [2]

    Peng J, Xu Z M, Wu X F, Sun T Y 2013 Acta Phys. Sin. 62 036104 (in Chinese) [彭静, 徐智谋, 吴小峰, 孙堂友 2013 物理学报 62 036104]

    [3]

    Wang E G 2003 Progress in Physics 23 1( in Chinese) [王恩哥 2003 物理学进展 23 1]

    [4]

    Maggic X, Michael C, Judy L H 2007 Semicond. Sci. Technol. 22 55

    [5]

    Zhang B C, Zhou X, Luo Z J, Ding Z 2012 Chin. Phys. B 21 048101

    [6]

    Hohenberg P, Kohn W 1964 Phys. Rev. B 136 864

    [7]

    Silvio P, Enrico B, Giorgia B, Michal V, Marcel M, Stefano C 2012 Theor. Chem. Acc. 131 1274

    [8]

    Andrea C L, Miroslav K 1997 J. Phys. Condens. Matter 9 299

    [9]

    Wang X P, Xie F, Shi Q W, Zhao T X 2004 Acta Phys. Sin. 53 2699 (in Chinese) [王晓平, 谢峰, 石勤伟, 赵特秀 2004 物理学报 53 2699]

    [10]

    Chen C, Chen Z, Zhang J, Yang T 2012 Acta Phys. Sin. 61 108103 (in Chinese) [陈成, 陈铮, 张静, 杨涛 2012 物理学报 61 108103]

    [11]

    Yu Y M, Liu B G 2004 Phys. Rev. E 69 021601

    [12]

    Fan M, Andrew Z 2010 Phys. Rev. B 81 235431

    [13]

    Burton W, Cabrera N, Frank F 1951 Philos. Trans. R. Soc. Lond. Ser. A 243 299

    [14]

    A Rötz, A Voigt 2004 App. Anal. 83 1015

    [15]

    Hu Z Z, Li S W, Lowengrub J S 2007 Phys. D 233 151

    [16]

    Adam Li, Feng Liu, Lagally M G 2000 Phy. Rev. Lett. 85 091922

    [17]

    Shchukin V A, Bimbery D 2003 Phy. Rev. Lett. 90 076102

    [18]

    Ni Y, He L H, Song J 2004 Surface Science 553 189

    [19]

    Grridhar N, Jacques G A 2006 Phy. Rev. B 73 045409

    [20]

    Li M Z, Yao Y G, Wu B, Zhang Z Y, Wang E G 2009 Euro Physics Letters 86 16001

    [21]

    Xu Y C, Liu B G 2009 Phys. B 404 4303

    [22]

    Uehara T, Fukuib M, Ohno N 2008 Journal of Crystal Growth 310 1331

    [23]

    Evans J W, Thiel P A, Bartelt M C 2006 Surface Science Reports 61 1-128

    [24]

    Kim S H, Kim J Y, Yu J, Lee T Y 2004 Journal of Electronic Materials 33 948

    [25]

    Ioannou-Sougleridis V, Constantoudisa V, Alexeb M, Scholz R, Vellianitisc G, Dimoulas A 2004 Thin Solid Films 468 303

    [26]

    Dai J L 2009 Electronic Components and Materials 28(7) 0033 (in Chinese) [戴结林 2009 电子元件与材料 28(7) 0033]

    [27]

    Davood R, Ahmad K, Hamid R F, Amir S H R 2007 Appl. Surf. Sci. 253 9085

    [28]

    Ernst H J, Fabre F, Folkerts R 1994 Phys. Rev. Lett. 72 112

  • [1] 刘东昆, 王庆宇, 张田, 周羽, 王翔. 大晶粒UO2燃料裂变气体释放行为相场模拟研究. 物理学报, 2024, 73(6): 066102. doi: 10.7498/aps.73.20231773
    [2] 耿晓彬, 李顶根, 徐波. 固态电解质电池锂枝晶生长机械应力-热力学相场模拟研究. 物理学报, 2023, 72(22): 220201. doi: 10.7498/aps.72.20230824
    [3] 张更, 王巧, 沙立婷, 李亚捷, 王达, 施思齐. 相场模型及其在电化学储能材料中的应用. 物理学报, 2020, 69(22): 226401. doi: 10.7498/aps.69.20201411
    [4] 郭子政, 邓海东, 黄佳声, 熊万杰, 徐初东. 应力调制的自旋转矩临界电流. 物理学报, 2014, 63(13): 138501. doi: 10.7498/aps.63.138501
    [5] 蒋亦民, 刘佑. 水-气-颗粒固体三相混合系统的流体动力学. 物理学报, 2013, 62(20): 204501. doi: 10.7498/aps.62.204501
    [6] 陈城钊, 郑元宇, 黄诗浩, 李成, 赖虹凯, 陈松岩. 硅基低位错密度厚锗外延层的UHV/CVD法生长. 物理学报, 2012, 61(7): 078104. doi: 10.7498/aps.61.078104
    [7] 王程, 王冠宇, 张鹤鸣, 宋建军, 杨晨东, 毛逸飞, 李永茂, 胡辉勇, 宣荣喜. 单轴、双轴应变Si拉曼谱应力模型. 物理学报, 2012, 61(4): 047203. doi: 10.7498/aps.61.047203
    [8] 苏少坚, 汪巍, 张广泽, 胡炜玄, 白安琪, 薛春来, 左玉华, 成步文, 王启明. Si(001)衬底上分子束外延生长Ge0.975Sn0.025合金薄膜. 物理学报, 2011, 60(2): 028101. doi: 10.7498/aps.60.028101
    [9] 谷文萍, 郝跃, 张进城, 王冲, 冯倩, 马晓华. 高场应力及栅应力下AlGaN/GaN HEMT器件退化研究. 物理学报, 2009, 58(1): 511-517. doi: 10.7498/aps.58.511
    [10] 赵达文, 李金富. 相场模型模拟液固界面各向异性作用下自由枝晶生长. 物理学报, 2009, 58(10): 7094-7100. doi: 10.7498/aps.58.7094
    [11] 何 萌, 刘国珍, 仇 杰, 邢 杰, 吕惠宾. 用激光分子束外延在Si衬底上外延生长高质量的TiN薄膜. 物理学报, 2008, 57(2): 1236-1240. doi: 10.7498/aps.57.1236
    [12] 李美亚, 汪 晶, 刘 军, 于本方, 郭冬云, 赵兴中. YBa2Cu3O7-x涂层导体的外延生长和性能对CeO2缓冲层的依赖性. 物理学报, 2008, 57(5): 3132-3137. doi: 10.7498/aps.57.3132
    [13] 喻利花, 董松涛, 董师润, 许俊华. AlN/Si3N4纳米多层膜的外延生长与力学性能. 物理学报, 2008, 57(8): 5151-5158. doi: 10.7498/aps.57.5151
    [14] 孔 明, 魏 仑, 董云杉, 李戈扬. TiN/Al2O3纳米多层膜的共格外延生长及超硬效应. 物理学报, 2006, 55(2): 770-775. doi: 10.7498/aps.55.770
    [15] 周耐根, 周 浪, 杜丹旭. 面心立方晶体外延膜沉积生长中失配位错的结构与形成过程. 物理学报, 2006, 55(1): 372-377. doi: 10.7498/aps.55.372
    [16] 王瑞敏, 陈光德, 竹有章. 六方相InGaN外延膜的显微Raman散射. 物理学报, 2006, 55(2): 914-919. doi: 10.7498/aps.55.914
    [17] 陶永梅, 蒋 青, 曹海霞. 用横场伊辛模型研究应力对铁电薄膜的热力学性质的影响. 物理学报, 2005, 54(1): 274-279. doi: 10.7498/aps.54.274
    [18] 孙贤开, 林碧霞, 朱俊杰, 张 杨, 傅竹西. LP-MOCVD异质外延ZnO薄膜中的应力及对缺陷的影响. 物理学报, 2005, 54(6): 2899-2903. doi: 10.7498/aps.54.2899
    [19] 劳技军, 胡晓萍, 虞晓江, 李戈扬, 顾明元. AlN在AlN/VN纳米多层膜中的相转变及其对薄膜力学性能的影响. 物理学报, 2003, 52(9): 2259-2263. doi: 10.7498/aps.52.2259
    [20] 叶健松, 胡晓君. 超薄膜外延生长的Monte Carlo模拟. 物理学报, 2002, 51(5): 1108-1112. doi: 10.7498/aps.51.1108
计量
  • 文章访问数:  4122
  • PDF下载量:  234
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-06
  • 修回日期:  2015-01-29
  • 刊出日期:  2015-07-05

/

返回文章
返回