搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

准直系统热光学效应对静态傅里叶变换红外光谱仪光谱复原的影响研究

陈成 梁静秋 梁中翥 吕金光 秦余欣 田超 王维彪

引用本文:
Citation:

准直系统热光学效应对静态傅里叶变换红外光谱仪光谱复原的影响研究

陈成, 梁静秋, 梁中翥, 吕金光, 秦余欣, 田超, 王维彪

Influence on the recovered spectrum caused by thermal optics effect of the collimation lens used in static Fourier transform infrared spectrometer

Chen Cheng, Liang Jing-Qiu, Liang Zhong-Zhu, Lü Jin-Guang, Qin Yu-Xin, Tian Chao, Wang Wei-Biao
PDF
导出引用
  • 在以多级微反射镜为核心器件的静态傅里叶变换红外光谱仪中, 由于准直系统距离红外光源较近, 光源的热辐射会导致其局部温度升高, 从而引起材料折射率发生改变, 使得由准直系统出射的光束存在一定的发散角, 进而影响光谱仪系统复原光谱所能达到的分辨率水平. 本文研究了光谱仪系统正常工作状态下准直系统各区域的温度分布情况, 由此计算出了相应的离焦量. 通过计算准直光束发散角在光程差采样区域内的分布, 分析了由此引入的附加光程差对光谱复原的影响. 通过计算光谱结构误差随准直系统温度的变化, 得到了准直系统温度控制的合理范围. 最后, 对基于SiC光源的光谱仪进行了实验, 结果显示制冷光源复原光谱的光谱结构误差与非制冷光源的光谱结构误差相比有明显改善. 因此, 降低光源温度对减小准直系统热光学效应的影响是非常有效的. 本文的研究结果将为解决同类问题提供参考.
    In a stepped-mirror-based static Fourier transform infrared spectrometer, the collimation lens is located adjacent to the light source and the thermal radiation would lead to the partial temperature increase, and the refractive index of the infrared material unavoidably changes. Then the light beam passing through the collimation lens will induce a divergence angle, directly affecting the resolution of the recovered spectrum. Meanwhile, the angular divergence results in a displacement in the interference signal, making increasing difficulties in the interferogram processing and the spectrum recovery. In this paper, the distribution of temperature in different areas of the collimation lens is studied under the working condition, and the defocusing value of the collimation lens is 0.153 mm that is caused by the refractive index gradient of the infrared material along with the temperature. In addition, the divergence angle induced by defocusing is calculated, its distribution being nonuniform but symmetrical within the sample area. Moreover, the divergence angle brings about additional optical path difference, its effect on the recovered spectrum is analyzed. Compared with the ideal recovered spectrum, much noise emerges and the peak value is reduced in the real recovered spectrum. The spectrum-construction error of the real recovered spectrum is 18.72%, indicating that the recovered spectrum is seriously distorted, and the resolution at the center wavelength in the ideal recovered spectrum and the real spectrum are 4.71 cm-1 and 5.57 cm-1, respectively. This indicates that the spectrum resolving power is weakened. Furthermore, the reasonable temperature range is obtained by analyzing the curve of spectrum-construction error versus temperature of the collimation lens. When a spectrum-construction error of less than 5% is demanded, the temperature difference between the front len of collimation and the ambient must be less than 8 ℃. Finally, experiments are performed using a SiC rod as the light source, and interferograms are made by four steps including dark current electric noise elimination, spatial gain correction, image signal averaging, and spectrum recovery. Results show that the spectrum-construction errors (SCE) from the cold light source and non-cold light source are 8.48% and 21.51%, respectively. Although they are all larger than the theoretical value, the SCE of cold light source decreases by 13.03% compared to cooling-free light source. Hence, it is necessary to reduced the thermal radiation influence on collimation lens from the light source. This result is helpful in solving the analogous problems.
    • 基金项目: 国家自然科学基金(批准号:61027010,60977062,61376122)、吉林省科技发展计划(批准号:201205025,20130206010GX,20150204072GX)和长春市科技计划(批准号:2011131,2013261)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61027010, 60977062, 61376122), the Jilin Province Science and Technology Development Plan, China (Grant Nos. 201205025, 20130206010GX, 20150204072GX), and the Changchun Science Development Plan, China (Grant Nos. 2011131, 2013261).
    [1]

    Dong Q L, Liu Y Q, Teng H, Li Y J, Zhang J 2014 Chin. Phys. B 23 065206

    [2]

    Giuseppe C, Alexander K, Scott D, Alexander G, Pavel S, Sergey B, Vladimir Y, Stefano C, Christophe P 2014 Light: Science & Applications 3 e203

    [3]

    Sin J, Lee W H, Popa D, Stephanou H E 2006 Proc. SPIE 6109 610904

    [4]

    Wallrabe U, Solf C, Mohr J, Korvink J G 2005 Sens. ctu. A 123-124 459

    [5]

    Kong Y M, Liang J Q, Wang B, Liang Z Z, Xu D W, Zhang J 2009 Spectrosc. Spec. Anal. 4 29 (in Chinese) [孔延梅, 梁静秋, 王波, 梁中翥, 徐大伟, 张军 2009 光谱学与光谱分析 4 29]

    [6]

    Brachet F, Hébert P J, Cansot E, Buil C, Lacan A, Roucayrol L, Courau E, Bernard F, Casteras C, Loesel J, Pierangelo C 2008 Proc. SPIE 7100 710019

    [7]

    Lacan A, Bréon F M, Rosak A, Brachet F, Roucayrol L, Etcheto P, Casteras C, Salan Y 2010 Opt. Express 8 18

    [8]

    Ivanov E V 2000 J . Opt A. Pure Appl. Opt. 6 2

    [9]

    L J G, Liang J Q, Liang Z Z 2012 Acta phys. sin. 61 140702 (in Chinese) [吕金光, 梁静秋, 梁中翥 2012 物理学报 61 140702]

    [10]

    Feng C, Wang B, Liang Z Z, Liang J Q 2011 J. Opt. Soc. Am. B. 1 28

    [11]

    Zhang Y M 2011 Applied Optics (Vol. 3) (Beijing: Publishing House of Electronics Industry) p561 (in Chinese) [张以谟 2011 应用光学 (北京:电子工业出版社) 第 561 页]

    [12]

    Saptari V 2003 Fouri-Transfrom Spectroscopy Instrumentation Engineering Washington, SPIE PRESS, 2003 p29

    [13]

    Zhang C M, Ren W Y, Mu T K 2010 Chin. Phys. B 19 024202

    [14]

    Kuo C W, Lin C L, Han C Y 2010 Appl. Opt. 19 49

    [15]

    Yang H S, Kihm H, Moon I K, Jung G J, Choi S C, Lee K J, Hwang H Y, Kim S W, Lee Y W 2011 Appl. Opt. 33 50

    [16]

    Wang X X, Jiao M Y 2009 J. Appl. Opt. 1 30 (in Chinese) [王学新, 焦明印 2009 应用光学 1 30]

    [17]

    L J G, Liang J Q, Liang Z Z 2012 Acta phys. sin. 61 070704 (in Chinese) [吕金光, 梁静秋, 梁中翥 2012 物理学报 61 070704]

    [18]

    Zhang C M, Huang W J, Zhao B C 2010 Acta Phys. Sin. 59 5479 (in Chinese) [张淳民, 黄伟建, 赵葆常 2010 物理学报 59 5479]

    [19]

    Feng C, Liang J Q, Liang Z Z 2011 Appl. Opt. 34 50

  • [1]

    Dong Q L, Liu Y Q, Teng H, Li Y J, Zhang J 2014 Chin. Phys. B 23 065206

    [2]

    Giuseppe C, Alexander K, Scott D, Alexander G, Pavel S, Sergey B, Vladimir Y, Stefano C, Christophe P 2014 Light: Science & Applications 3 e203

    [3]

    Sin J, Lee W H, Popa D, Stephanou H E 2006 Proc. SPIE 6109 610904

    [4]

    Wallrabe U, Solf C, Mohr J, Korvink J G 2005 Sens. ctu. A 123-124 459

    [5]

    Kong Y M, Liang J Q, Wang B, Liang Z Z, Xu D W, Zhang J 2009 Spectrosc. Spec. Anal. 4 29 (in Chinese) [孔延梅, 梁静秋, 王波, 梁中翥, 徐大伟, 张军 2009 光谱学与光谱分析 4 29]

    [6]

    Brachet F, Hébert P J, Cansot E, Buil C, Lacan A, Roucayrol L, Courau E, Bernard F, Casteras C, Loesel J, Pierangelo C 2008 Proc. SPIE 7100 710019

    [7]

    Lacan A, Bréon F M, Rosak A, Brachet F, Roucayrol L, Etcheto P, Casteras C, Salan Y 2010 Opt. Express 8 18

    [8]

    Ivanov E V 2000 J . Opt A. Pure Appl. Opt. 6 2

    [9]

    L J G, Liang J Q, Liang Z Z 2012 Acta phys. sin. 61 140702 (in Chinese) [吕金光, 梁静秋, 梁中翥 2012 物理学报 61 140702]

    [10]

    Feng C, Wang B, Liang Z Z, Liang J Q 2011 J. Opt. Soc. Am. B. 1 28

    [11]

    Zhang Y M 2011 Applied Optics (Vol. 3) (Beijing: Publishing House of Electronics Industry) p561 (in Chinese) [张以谟 2011 应用光学 (北京:电子工业出版社) 第 561 页]

    [12]

    Saptari V 2003 Fouri-Transfrom Spectroscopy Instrumentation Engineering Washington, SPIE PRESS, 2003 p29

    [13]

    Zhang C M, Ren W Y, Mu T K 2010 Chin. Phys. B 19 024202

    [14]

    Kuo C W, Lin C L, Han C Y 2010 Appl. Opt. 19 49

    [15]

    Yang H S, Kihm H, Moon I K, Jung G J, Choi S C, Lee K J, Hwang H Y, Kim S W, Lee Y W 2011 Appl. Opt. 33 50

    [16]

    Wang X X, Jiao M Y 2009 J. Appl. Opt. 1 30 (in Chinese) [王学新, 焦明印 2009 应用光学 1 30]

    [17]

    L J G, Liang J Q, Liang Z Z 2012 Acta phys. sin. 61 070704 (in Chinese) [吕金光, 梁静秋, 梁中翥 2012 物理学报 61 070704]

    [18]

    Zhang C M, Huang W J, Zhao B C 2010 Acta Phys. Sin. 59 5479 (in Chinese) [张淳民, 黄伟建, 赵葆常 2010 物理学报 59 5479]

    [19]

    Feng C, Liang J Q, Liang Z Z 2011 Appl. Opt. 34 50

  • [1] 邱乙耕, 范元媛, 颜博霞, 王延伟, 吴一航, 韩哲, 亓岩, 鲁平. 光声光谱仪用三维扩展光源光场整形系统设计与实验. 物理学报, 2021, 70(20): 204201. doi: 10.7498/aps.70.20210691
    [2] 曾祥昱, 王薇, 刘诚, 单昌功, 谢宇, 胡启后, 孙友文, PolyakovAlexander Viktorovich. 利用地基高分辨率傅里叶变换红外光谱技术探测大气氟氯烃气体CCl2F2的时空变化特征. 物理学报, 2021, 70(20): 200201. doi: 10.7498/aps.70.20210640
    [3] 吴彤, 孙帅帅, 王绪晖, 王吉明, 赫崇君, 顾晓蓉, 刘友文. 基于最优化线性波数光谱仪的谱域光学相干层析成像系统. 物理学报, 2018, 67(10): 104208. doi: 10.7498/aps.67.20172606
    [4] 王洪亮, 吕金光, 梁静秋, 梁中翥, 秦余欣, 王维彪. 中波红外微型静态傅里叶变换光谱仪的设计与分析. 物理学报, 2018, 67(6): 060702. doi: 10.7498/aps.67.20172599
    [5] 李金洋, 逯丹凤, 祁志美. 集成光波导静态傅里叶变换微光谱仪分辨率倍增方法. 物理学报, 2015, 64(11): 114207. doi: 10.7498/aps.64.114207
    [6] 田园, 孙友文, 谢品华, 刘诚, 刘文清, 刘建国, 李昂, 胡仁志, 王薇, 曾议. 地基高分辨率傅里叶变换红外光谱反演环境大气中的CH4浓度变化. 物理学报, 2015, 64(7): 070704. doi: 10.7498/aps.64.070704
    [7] 王文丛, 梁静秋, 梁中翥, 吕金光, 秦余欣, 田超, 王维彪. 时空联合调制成像光谱仪前置成像系统分析与设计. 物理学报, 2014, 63(10): 100701. doi: 10.7498/aps.63.100701
    [8] 裴琳琳, 吕群波, 王建威, 刘扬阳. 编码孔径成像光谱仪光学系统设计. 物理学报, 2014, 63(21): 210702. doi: 10.7498/aps.63.210702
    [9] 缪庆元, 崔俊, 胡蕾蕾, 何健, 何平安, 黄德修. 载流子导引的折射率变化偏振相关性研究. 物理学报, 2012, 61(20): 207803. doi: 10.7498/aps.61.207803
    [10] 陶汝茂, 司磊, 马阎星, 邹永超, 周朴. 高能光纤激光经准直系统后的光束质量研究. 物理学报, 2011, 60(10): 104208. doi: 10.7498/aps.60.104208
    [11] 张淳民, 刘宁, 吴福全. 偏振干涉成像光谱仪中格兰-泰勒棱镜全视场角透过率的分析与计算. 物理学报, 2010, 59(2): 949-957. doi: 10.7498/aps.59.949
    [12] 王栋. 滤波-荧光谱仪的优化设计. 物理学报, 2010, 59(1): 443-446. doi: 10.7498/aps.59.443
    [13] 刘英, 孙强, 卢振武, 曲锋, 吴宏圣, 李淳. 折射/谐衍射红外双波段成像光谱仪系统研究. 物理学报, 2010, 59(10): 6980-6987. doi: 10.7498/aps.59.6980
    [14] 王栋栋, 陈云琳, 李 兵, 颜采繁, 许京军, 张光寅. 利用光衍射效应探测周期极化微结构晶体. 物理学报, 2007, 56(12): 7153-7157. doi: 10.7498/aps.56.7153
    [15] 简小华, 张淳民, 赵葆常. 研究干涉图处理与光谱复原的一种新方法. 物理学报, 2007, 56(2): 824-829. doi: 10.7498/aps.56.824
    [16] 彭志红, 张淳民, 赵葆常, 李英才, 吴福全. 新型偏振干涉成像光谱仪中Savart偏光镜透射率的研究. 物理学报, 2006, 55(12): 6374-6381. doi: 10.7498/aps.55.6374
    [17] 刘运全, 张 杰, 陈正林, 彭晓昱. 软x射线平场光谱仪系统的优化设计. 物理学报, 2004, 53(5): 1433-1439. doi: 10.7498/aps.53.1433
    [18] 冯洪安, 余玉贞, 黄炳忠. 椭偏光谱对复数折射率薄膜的研究——ITO膜光学常数的色散和生长规律. 物理学报, 1986, 35(3): 319-328. doi: 10.7498/aps.35.319
    [19] 郭常新, 查长生. 用高压显微光谱系统研究非晶态As2S3的光学折射率随流体静压力变化的规律. 物理学报, 1982, 31(12): 44-54. doi: 10.7498/aps.31.44
    [20] 潘振华, 钱人元. 聚酰胺6的红外光谱. 物理学报, 1962, 18(3): 159-164. doi: 10.7498/aps.18.159
计量
  • 文章访问数:  4499
  • PDF下载量:  158
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-23
  • 修回日期:  2015-02-04
  • 刊出日期:  2015-07-05

/

返回文章
返回