搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

ZnSb掺杂的Ge2Sb2Te5薄膜的相变性能研究

田曼曼 王国祥 沈祥 陈益敏 徐铁峰 戴世勋 聂秋华

引用本文:
Citation:

ZnSb掺杂的Ge2Sb2Te5薄膜的相变性能研究

田曼曼, 王国祥, 沈祥, 陈益敏, 徐铁峰, 戴世勋, 聂秋华

Phase change properties of ZnSb-doped Ge2Sb2Te5 films

Tian Man-Man, Wang Guo-Xiang, Shen Xiang, Chen Yi-Min, Xu Tie-Feng, Dai Shi-Xun, Nie Qiu-Hua
PDF
导出引用
  • 本文采用双靶(ZnSb靶和Ge2Sb2Te5靶)共溅射制备了系列ZnSb掺杂的Ge2Sb2Te5(GST)薄膜. 利用X射线衍射、透射电子显微镜、原位等温/变温电阻测量、X射线光电子能谱等测试研究了薄膜样品的非晶形态、电学及原子成键特性. 利用等温原位电阻测试表明ZnSb掺杂的Ge2Sb2Te5薄膜具有更高的结晶温度. 采用Arrhenius 公式计算发现ZnSb掺杂的Ge2Sb2Te5薄膜的十年数据保持温度均高于传统的Ge2Sb2Te5薄膜的88.9℃. 薄膜在200, 250, 300和350℃ 下退火后的X射线衍射图谱表明ZnSb的掺杂抑制了Ge2Sb2Te5薄膜从fcc态到hex态的转变. 通过对薄膜的光电子能谱和透射电镜分析可知Zn, Sb, Te原子之间键进行重组, 形成Zn–Sb 和Zn–Te 键, 且构成非晶物质存在于晶体周围. 采用相变静态检测仪测试样品的相变行为发现ZnSb掺杂的Ge2Sb2Te5薄膜具有更快的结晶速度. 特别是(ZnSb)24.3(Ge2Sb2Te5)75.7薄膜, 其结晶温度达到250℃, 十年数据保持温度达到130.1℃, 并且在70 mW激光脉冲功率下晶化时间仅~64 ns, 远快于传统Ge2Sb2Te5薄膜的晶化时间~280 ns. 以上结果表明(ZnSb)24.3(Ge2Sb2Te5)75.7薄膜是一种热稳定性好且结晶速度快的相变存储材料.
    ZnSb-doped Ge2Sb2Te5 films have been deposited by magnetron co-sputtering using separated ZnSb and Ge2Sb2Te5 alloy targets. The concentrations of ZnSb dopant in the ZnSb-added Ge2Sb2Te5 films, measured by using energy dispersive spectroscopy (EDS), are identified to be 5.4, 9.9, 18.7 and 24.3 at. %, respectively. X-ray diffraction (XRD), in situ sheet resistance measurements, X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM), are used to analyze the relationships among the composition, structures and properties of the films. The sheet resistance as a function of the temperature (R-T) is in situ measured using the four-probe method in a home-made vacuum chamber. It is found that the crystallization temperature of ZnSb-doped Ge2Sb2Te5 films are much higher than that of conventional Ge2Sb2Te5 (~168℃). The higher crystallization temperature is helpful to improve the amorphous thermal stability. Data retention can be obtained by the extrapolated fitting curve based on the Arrhenius equation. It is shown that the values of 10-yr data retention for ZnSb-doped Ge2Sb2Te5 films are higher than that of conventional Ge2Sb2Te5 film (~ 88.9℃). XRD patterns of the as-deposited films when annealed at 200℃, 250℃, 300℃, and 350℃ show that ZnSb-doping can suppress the phase transition from fcc phase to hex phase. XPS spectra are further used to investigate the binding state of (ZnSb)18.7(Ge2Sb2Te5)81.3, suggesting that the Zn–Sb and Zn–Te bonds may exist in an amorphous state. In addition, we have measured the dark-field TEM images, selected area electron diffraction patterns, and high-resolution transmission electron microscopy images of the (ZnSb)18.7(Ge2Sb2Te5)81.3 films. Apparently, the films show a uniform distribution of crystalline phase with the dark areas surrounded by bright ones (Zn–Te or Zn–Sb domain). A static tester using pulsed laser irradiation is employed to investigate the phase transition behavior in nanoseconds. Results show that the ZnSb-doped Ge2Sb2Te5 films exhibit a faster crystallization speed. Among these samples, the (ZnSb)24.3(Ge2Sb2Te5)75.7 film exhibits a higher crystallization temperature of 250℃ and the 10 years data retention is 130.1℃. The duration of time for crystallization of (ZnSb)24.3(Ge2Sb2Te5)75.7 is revealed to be as short as ~64 ns at a given proper laser power 70 mW. A reversible repetitive optical switching behavior can be observed in (ZnSb)24.3(Ge2Sb2Te5)75.7, confirming that the ZnSb doping is responsible for a fast switching and the compound is stable with cycling. These excellent properties indicate that the (ZnSb)24.3(Ge2Sb2Te5)75.7 film is a potential candidate as the high-performance phase change material.
      通信作者: 沈祥, shenxiang@nbu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61377061, 61306147)、浙江省公益技术研究工业项目(批准号: 2014C31146)、浙江省中青年学科带头人学术攀登项目(批准号: pd2013092)和宁波大学王宽诚幸福基金资助和浙江省自然科学基金(批准号: LQ15F040002)资助的课题.
      Corresponding author: Shen Xiang, shenxiang@nbu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61377061, 61306147), the Public Project of Zhejiang Province, China (Grant No. 2014C31146), the Young Leaders of the academic climbing project of the Education Department of Zhejiang Province, China (Grant No. pd2013092), and by K. C. Wong Magna Fund at Ningbo University, the Natural Science Foundation of Zhejiang Province, China (Grant No. LQ15F040002).
    [1]

    Ovshinsky S R 1968 Phys. Rev. Lett. 21 1450

    [2]

    Giusca C E, Stolojan V, Sloan J, Borrnert F, Shiozawa H, Sader K, Rummeli M H, Buchner B, Silva S R 2013 Nano Lett. 13 4020

    [3]

    Wuttig M, Yamada N 2007 Nat. Mater. 6 824

    [4]

    Kolobov A V, Fons P, Frenkel A I, Ankudinov A L, Tominaga J, Uruga T 2004 Nat. Mater. 3 703

    [5]

    Wuttig M 2005 Nat. Mater. 4 265

    [6]

    Liu B, Song Z T, Zhang T, Feng S L, Chen B 2004 Chin. Phys. 13 1947

    [7]

    Sutou Y, Kamada T, Sumiya M, Saito Y, Koike J 2012 Acta. Mater. 60 872

    [8]

    Zhu M, Wu L C, Song Z T, Rao F, Cai D L, Peng C 2012 Appl. Phys. Lett. 100 122101

    [9]

    Kim Y K, Jeong K, Cho M H, Hwang U, Jeong H S 2007 Appl. Phys. Lett. 90 171920

    [10]

    Seo J H, Song K H, Lee H Y 2008 J. Appl. Phys. 108 064515

    [11]

    Wang G X, Nie Q H, Shen X, Wang R P, Wu L C, Fu J, Xu T F, Dai S X 2012 Appl. Phys. Lett. 101 051906

    [12]

    Wei S J, Zhu H F, Chen K, Xu D, Li J, Gan F X, Zhang X, Xia Y J, Li G H 2011 Appl. Phys. Lett. 98 231910

    [13]

    Zhou X, Wu L, Song Z, Rao F, Zhu M, Peng C, Yao D, Song S, Liu B, Feng S 2012 Appl. Phys. Lett. 101 142104

    [14]

    Singh G, Kaura A, Mukul M, Tripathi S K 2013 J. Mater. Sci. 48 299

    [15]

    Chen Y M, Wang G X, Shen X, Xu T F, Wang R P, Wu L C, Lu Y G, Li J J, Dai S X, Nie Q H 2014 Cryst. Eng. Comm. 16 757

    [16]

    Wuttig M, Steimer C 2007 Appl. Phys. A 87 411

    [17]

    Shen X, Wang G X, Wang R P, W L C, Fu J, Xu T F, Nie Q H 2013 Appl. Phys. Lett. 102 131902

    [18]

    Kim D, Merget F, Laurenzis M, Bolivar P H, Wuttig M 2007 Microsyst. Technol. 13 153

    [19]

    Coombs J H, Jongenelis A P, Es-Spiekman W V, Jacobs B A 1995 J. Appl. phys. 78 4906

    [20]

    Lee T Y, Kim C, Kang Y, Suh D S, Kim K H, Khang Y 2008 Appl. Phys. Lett. 92 101908

    [21]

    Detemple R, Wamwangi D, Bihlmayer G, Wuttig M 2003 Appl. Phys. Lett. 83 2572

    [22]

    Kang M J, Park T J, Wamwangi D, Wang K, Steimer C, Choi S Y, Wuttig M 2007 Microsyst. Technol. 13 153

    [23]

    Ziegler S, Wuttig M 2006 J. Appl. Phys. 99 064907

    [24]

    Wang G X, Shen X, Nie Q H, Wang R P, Wu L C, Lu Y G, Dai S X, Xu T F, Chen Y M 2013 Appl. Phys. Lett. 103 031914

  • [1]

    Ovshinsky S R 1968 Phys. Rev. Lett. 21 1450

    [2]

    Giusca C E, Stolojan V, Sloan J, Borrnert F, Shiozawa H, Sader K, Rummeli M H, Buchner B, Silva S R 2013 Nano Lett. 13 4020

    [3]

    Wuttig M, Yamada N 2007 Nat. Mater. 6 824

    [4]

    Kolobov A V, Fons P, Frenkel A I, Ankudinov A L, Tominaga J, Uruga T 2004 Nat. Mater. 3 703

    [5]

    Wuttig M 2005 Nat. Mater. 4 265

    [6]

    Liu B, Song Z T, Zhang T, Feng S L, Chen B 2004 Chin. Phys. 13 1947

    [7]

    Sutou Y, Kamada T, Sumiya M, Saito Y, Koike J 2012 Acta. Mater. 60 872

    [8]

    Zhu M, Wu L C, Song Z T, Rao F, Cai D L, Peng C 2012 Appl. Phys. Lett. 100 122101

    [9]

    Kim Y K, Jeong K, Cho M H, Hwang U, Jeong H S 2007 Appl. Phys. Lett. 90 171920

    [10]

    Seo J H, Song K H, Lee H Y 2008 J. Appl. Phys. 108 064515

    [11]

    Wang G X, Nie Q H, Shen X, Wang R P, Wu L C, Fu J, Xu T F, Dai S X 2012 Appl. Phys. Lett. 101 051906

    [12]

    Wei S J, Zhu H F, Chen K, Xu D, Li J, Gan F X, Zhang X, Xia Y J, Li G H 2011 Appl. Phys. Lett. 98 231910

    [13]

    Zhou X, Wu L, Song Z, Rao F, Zhu M, Peng C, Yao D, Song S, Liu B, Feng S 2012 Appl. Phys. Lett. 101 142104

    [14]

    Singh G, Kaura A, Mukul M, Tripathi S K 2013 J. Mater. Sci. 48 299

    [15]

    Chen Y M, Wang G X, Shen X, Xu T F, Wang R P, Wu L C, Lu Y G, Li J J, Dai S X, Nie Q H 2014 Cryst. Eng. Comm. 16 757

    [16]

    Wuttig M, Steimer C 2007 Appl. Phys. A 87 411

    [17]

    Shen X, Wang G X, Wang R P, W L C, Fu J, Xu T F, Nie Q H 2013 Appl. Phys. Lett. 102 131902

    [18]

    Kim D, Merget F, Laurenzis M, Bolivar P H, Wuttig M 2007 Microsyst. Technol. 13 153

    [19]

    Coombs J H, Jongenelis A P, Es-Spiekman W V, Jacobs B A 1995 J. Appl. phys. 78 4906

    [20]

    Lee T Y, Kim C, Kang Y, Suh D S, Kim K H, Khang Y 2008 Appl. Phys. Lett. 92 101908

    [21]

    Detemple R, Wamwangi D, Bihlmayer G, Wuttig M 2003 Appl. Phys. Lett. 83 2572

    [22]

    Kang M J, Park T J, Wamwangi D, Wang K, Steimer C, Choi S Y, Wuttig M 2007 Microsyst. Technol. 13 153

    [23]

    Ziegler S, Wuttig M 2006 J. Appl. Phys. 99 064907

    [24]

    Wang G X, Shen X, Nie Q H, Wang R P, Wu L C, Lu Y G, Dai S X, Xu T F, Chen Y M 2013 Appl. Phys. Lett. 103 031914

  • [1] 杨旭, 李静, 毛宇, 陶可爱, 孙宽, 陈珊珊, 周永利, 郑玉杰. 基于六水氯化钙的单相变材料热二极管的实验研究. 物理学报, 2024, 73(5): 058301. doi: 10.7498/aps.73.20231686
    [2] 朱祥宁, 冯黛丽, 冯妍卉, 林林, 张欣欣. 木基生物质碳化骨架负载聚乙二醇相变材料及表面修饰对蓄传热性能的强化. 物理学报, 2023, 72(8): 088801. doi: 10.7498/aps.72.20222466
    [3] 康亚斌, 袁小朋, 王晓波, 李克伟, 宫殿清, 程旭东. 分层化金属陶瓷光热转换涂层的微结构构筑与热稳定性. 物理学报, 2023, 72(5): 057103. doi: 10.7498/aps.72.20221693
    [4] 金嘉升, 马成举, 张垚, 张跃斌, 鲍士仟, 李咪, 李东明, 刘洺, 刘芊震, 张贻歆. 基于相变材料的慢光和吸收可切换多功能太赫兹超材料. 物理学报, 2023, 72(8): 084202. doi: 10.7498/aps.72.20222336
    [5] 刘娜, 王译, 李文波, 张丽艳, 何世坤, 赵建坤, 赵纪军. 外尔半金属WTe2/Ti异质结的热稳定性拉曼散射研究. 物理学报, 2022, 71(19): 197501. doi: 10.7498/aps.71.20220712
    [6] 龙洁, 李九生. 相变材料与超表面复合结构太赫兹移相器. 物理学报, 2021, 70(7): 074201. doi: 10.7498/aps.70.20201495
    [7] 严巍, 王纪永, 曲俞睿, 李强, 仇旻. 基于相变材料超表面的光学调控. 物理学报, 2020, 69(15): 154202. doi: 10.7498/aps.69.20200453
    [8] 朱小芹, 胡益丰. Ge50Te50/Zn15Sb85纳米复合多层薄膜在高热稳定性和低功耗相变存储器中的应用. 物理学报, 2020, 69(14): 146101. doi: 10.7498/aps.69.20200502
    [9] 刘乐, 汤建, 王琴琴, 时东霞, 张广宇. 石墨烯封装单层二硫化钼的热稳定性研究. 物理学报, 2018, 67(22): 226501. doi: 10.7498/aps.67.20181255
    [10] 卢顺顺, 张晋敏, 郭笑天, 高廷红, 田泽安, 何帆, 贺晓金, 吴宏仙, 谢泉. 碳纳米管包裹的硅纳米线复合结构的热稳定性研究. 物理学报, 2016, 65(11): 116501. doi: 10.7498/aps.65.116501
    [11] 马国亮, 李兴冀, 杨剑群, 刘超铭, 田丰, 侯春风. 电子辐照LDPE/MWCNTs复合材料的熔融与结晶行为. 物理学报, 2016, 65(20): 208101. doi: 10.7498/aps.65.208101
    [12] 鲁东, 金冬月, 张万荣, 张瑜洁, 付强, 胡瑞心, 高栋, 张卿远, 霍文娟, 周孟龙, 邵翔鹏. 新型宽温区高热稳定性微波功率SiGe 异质结双极晶体管. 物理学报, 2013, 62(10): 104401. doi: 10.7498/aps.62.104401
    [13] 周广宏, 潘旋, 朱雨富. BiFeO3/Ni81Fe19磁性双层膜中的交换偏置及其热稳定性研究. 物理学报, 2013, 62(9): 097501. doi: 10.7498/aps.62.097501
    [14] 张章, 熊贤仲, 乙姣姣, 李金富. Al-Ni-RE非晶合金的晶化行为和热稳定性. 物理学报, 2013, 62(13): 136401. doi: 10.7498/aps.62.136401
    [15] 闫建成, 何智兵, 阳志林, 陈志梅, 唐永建, 韦建军. 玻璃微球表面辉光等离子体聚合物涂层的热稳定性研究. 物理学报, 2010, 59(11): 8005-8009. doi: 10.7498/aps.59.8005
    [16] 张凯旺, 孟利军, 李 俊, 刘文亮, 唐 翌, 钟建新. 碳纳米管内金纳米线的结构与热稳定性. 物理学报, 2008, 57(7): 4347-4355. doi: 10.7498/aps.57.4347
    [17] 黄生荣, 陈 朝. 纳秒级脉冲激光诱导Zn掺杂过程中GaN/Al2O3材料的温度分布及热形变解析分析. 物理学报, 2007, 56(8): 4596-4601. doi: 10.7498/aps.56.4596
    [18] 沈 祥, 聂秋华, 徐铁峰, 高 媛. Er3+/Yb3+共掺碲钨酸盐玻璃的光谱性质和热稳定性的研究. 物理学报, 2005, 54(5): 2379-2384. doi: 10.7498/aps.54.2379
    [19] 滕蛟, 蔡建旺, 熊小涛, 赖武彦, 朱逢吾. NiFe/FeMn双层膜交换偏置的形成及热稳定性研究. 物理学报, 2004, 53(1): 272-275. doi: 10.7498/aps.53.272
    [20] 杨慎东, 宁兆元, 黄峰, 程珊华, 叶超. a-C:F薄膜的热稳定性与光学带隙的关联. 物理学报, 2002, 51(6): 1321-1325. doi: 10.7498/aps.51.1321
计量
  • 文章访问数:  4888
  • PDF下载量:  184
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-30
  • 修回日期:  2015-04-29
  • 刊出日期:  2015-09-05

/

返回文章
返回