搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

瞬态大电流测量结温中校温曲线弯曲现象的研究

郭春生 王琳 翟玉卫 李睿 冯士维 朱慧

引用本文:
Citation:

瞬态大电流测量结温中校温曲线弯曲现象的研究

郭春生, 王琳, 翟玉卫, 李睿, 冯士维, 朱慧

Bending phenomenon of temperature calibration curve in junction temperature measurement by the high transient current

Guo Chun-Sheng, Wang Lin, Zhai Yu-Wei, Li Rui, Feng Shi-Wei, Zhu Hui
PDF
导出引用
  • 利用脉宽250 μs、占空比5%的0–1.5 A脉冲电流, 分别在50, 70, 90, 110, 130 ℃条件下, 对TO-247-2L封装型PIN快恢复二极管大电流下的校温曲线进行了测量分析. 研究发现, 恒定大电流条件下, 二极管的校温曲线随温度变化发生弯曲. 分析表明, 弯曲现象主要是由于串联电阻受迁移率的影响随温度发生变化而引起的. 通过实验测量及理论计算, 得到了准确的非线性校温曲线, 从而减小了瞬态大电流测量结温中的误差.
    To measure the junction temperature of diodes under operating conditions, the temperature calibration curve is studied under large current conditions. To avoid the self heating by the large current conditions, pulsed currents are used in the paper. The temperature calibration curve of TO-247-2L fast recovery diode is investigated in this paper. The 0-1.5 A pulse current, of which the pulse width is 250 μs and the duty cycle is 5%, is chosen to study the temperature calibration curves under 50, 70, 90, 110, 130 ℃ respectively.#br#The results show that under the large current condition, the temperature calibration curve bends. The main reason for the bending phenomenon is that the series resistance changes with temperature increasing, which is affected by the mobilities of electrons and holes in semiconductor material. With the temperature rising, the mobility decreases, which results in the increasing of series resistance. Due to the series resistance increasing The voltage on p-n junction will be reduced. For this reason, a higher voltage is needed to obtain the same current, and the temperature calibration curve will bend.#br#There are two reasons which will lead to the temperature rising. The first reason is self-heating of devices by the power dissipation, and the second reason is that the temperature of device is heated by ambient temperature. Under the same temperature, self-heating behaviors of device by different currents will result in different series resistances. But in the paper, the results show that the series resistances under different currents are the same, which illustrates that self-heating is not the key reason for the change of series resistance. So, the temperature changing of the diode is caused by the ambient temperature rising, which verifies that the bending phenomenon of the temperature calibration curve of TO-247-2L fast recovery diode is caused by the ambient temperature rising.#br#Then, through experimental measurements and theoretical calculations, the accurate nonlinear temperature calibration curve is acquired, which can reduce the measurement errors of high current transient junction temperature.
      通信作者: 郭春生, guocs@bjut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61204081)资助的课题.
      Corresponding author: Guo Chun-Sheng, guocs@bjut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61204081).
    [1]

    Kuball M, Riedel G J, Pomeroy J W, Sarua A, Uren M J, Martin T, Hilton K P, Maclean J O, Wallis D J 2007 IEEE 28 86

    [2]

    Profumo F, Zhu Y J 2000 Converter Technology 2 20 (in Chinese) [Profumo F, 朱咏嘉 2000 变流技术与电力牵引 2 20]

    [3]

    Rakhmatov A Z, Abdulkhaev O A, Karimov A V, Yodgorova D M 2012 J. Engineer. Phys. Thermophys. 85 836

    [4]

    Abdulkhaev O A, Yodgorova D M, Karimov A V, Karimov A A, Asanova G O 2012 J. Engineer. Phys. Thermophys. 85 851

    [5]

    Hu Z B 2014 M. S. Dissertation (Xiamen: Xiamen University) (in Chinese) [胡振邦 2014 硕士学位论文 (厦门: 厦门大学)]

    [6]

    Chen H T 2010 M. S. Dissertation (Xiamen: Xiamen University) (in Chinese) [陈焕庭 2010 硕士学位论文(厦门: 厦门大学)]

    [7]

    Zhu Y J, Miao Q H, Zhang X H, Yang L Y, Lu S J 2007 J. Semicond. 28 980 (in Chinese) [朱阳军, 苗庆海, 张兴华, Yang Lieyong, 卢烁今 2007 半导体学报 28 980]

    [8]

    Lu S J 2007 M. S. Dissertation (Shandong: Shandong University) (in Chinese) [卢烁今 2007 硕士学位论文(济南: 山东大学)]

    [9]

    Kong W X 2013 M. S. Dissertation (Nanjing: Nanjing University) (in Chinese) [孔维贤 2013 硕士学位论文(南京: 南京大学)]

    [10]

    Hu H Q, Zhang W C 2013 Electronics World 61 60 (in Chinese) [胡红钱, 张文成 2013 电子世界 61 60]

    [11]

    Liu B L, Tang Y, Luo Y F, Liu D Z, Wang R T, Wang B 2014 Acta Phys. Sin. 63 177201(in Chinese) [刘宾礼, 唐勇, 罗毅飞, 刘德志, 王瑞田, 汪波 2014 物理学报 63 177201]

    [12]

    Liu E K et al. 2010 Semicond. Phys. (Beijing: National Defense Industry Press) p97, 156 (in Chinese) [刘恩科等 2010 半导体物理学(北京: 国防工业出版社)第97, 156页]

    [13]

    Zhang Y Z 2009 Ph. D. Dissertation (Beijing: Beijing University of Technology) (in Chinese) [张跃宗 2009 博士学位论文(北京: 北京工业大学)]

    [14]

    Chen M, Hu A, Tang Y, Wang B 2012 J. Xi'an Jiaotong Univ. 46 70 (in Chinese) [陈明, 胡安, 唐勇, 汪波 2012 西安交通大学学报 46 70]

    [15]

    Chen Q, Luo X, Zhou S, Liu S 2011 Rev. Sci. Instrum. 82 084904

    [16]

    Li B Q, Liu Y H, Feng Y C 2008 Acta Phys. Sin. 57 477(in Chinese) [李炳乾, 刘玉华, 冯玉春 2008 物理学报 57 477]

  • [1]

    Kuball M, Riedel G J, Pomeroy J W, Sarua A, Uren M J, Martin T, Hilton K P, Maclean J O, Wallis D J 2007 IEEE 28 86

    [2]

    Profumo F, Zhu Y J 2000 Converter Technology 2 20 (in Chinese) [Profumo F, 朱咏嘉 2000 变流技术与电力牵引 2 20]

    [3]

    Rakhmatov A Z, Abdulkhaev O A, Karimov A V, Yodgorova D M 2012 J. Engineer. Phys. Thermophys. 85 836

    [4]

    Abdulkhaev O A, Yodgorova D M, Karimov A V, Karimov A A, Asanova G O 2012 J. Engineer. Phys. Thermophys. 85 851

    [5]

    Hu Z B 2014 M. S. Dissertation (Xiamen: Xiamen University) (in Chinese) [胡振邦 2014 硕士学位论文 (厦门: 厦门大学)]

    [6]

    Chen H T 2010 M. S. Dissertation (Xiamen: Xiamen University) (in Chinese) [陈焕庭 2010 硕士学位论文(厦门: 厦门大学)]

    [7]

    Zhu Y J, Miao Q H, Zhang X H, Yang L Y, Lu S J 2007 J. Semicond. 28 980 (in Chinese) [朱阳军, 苗庆海, 张兴华, Yang Lieyong, 卢烁今 2007 半导体学报 28 980]

    [8]

    Lu S J 2007 M. S. Dissertation (Shandong: Shandong University) (in Chinese) [卢烁今 2007 硕士学位论文(济南: 山东大学)]

    [9]

    Kong W X 2013 M. S. Dissertation (Nanjing: Nanjing University) (in Chinese) [孔维贤 2013 硕士学位论文(南京: 南京大学)]

    [10]

    Hu H Q, Zhang W C 2013 Electronics World 61 60 (in Chinese) [胡红钱, 张文成 2013 电子世界 61 60]

    [11]

    Liu B L, Tang Y, Luo Y F, Liu D Z, Wang R T, Wang B 2014 Acta Phys. Sin. 63 177201(in Chinese) [刘宾礼, 唐勇, 罗毅飞, 刘德志, 王瑞田, 汪波 2014 物理学报 63 177201]

    [12]

    Liu E K et al. 2010 Semicond. Phys. (Beijing: National Defense Industry Press) p97, 156 (in Chinese) [刘恩科等 2010 半导体物理学(北京: 国防工业出版社)第97, 156页]

    [13]

    Zhang Y Z 2009 Ph. D. Dissertation (Beijing: Beijing University of Technology) (in Chinese) [张跃宗 2009 博士学位论文(北京: 北京工业大学)]

    [14]

    Chen M, Hu A, Tang Y, Wang B 2012 J. Xi'an Jiaotong Univ. 46 70 (in Chinese) [陈明, 胡安, 唐勇, 汪波 2012 西安交通大学学报 46 70]

    [15]

    Chen Q, Luo X, Zhou S, Liu S 2011 Rev. Sci. Instrum. 82 084904

    [16]

    Li B Q, Liu Y H, Feng Y C 2008 Acta Phys. Sin. 57 477(in Chinese) [李炳乾, 刘玉华, 冯玉春 2008 物理学报 57 477]

  • [1] 闫大为, 田葵葵, 闫晓红, 李伟然, 俞道欣, 李金晓, 曹艳荣, 顾晓峰. GaN肖特基二极管的正向电流输运和低频噪声行为. 物理学报, 2021, 70(8): 087201. doi: 10.7498/aps.70.20201467
    [2] 吕泽琦, 谢彦召, 苟明岳, 陈晓宇, 周金山, 李梅, 周熠. 一种200 kV的多功能脉冲辐射系统研制. 物理学报, 2021, 70(20): 205206. doi: 10.7498/aps.70.20210583
    [3] 唐文昕, 郝荣晖, 陈扶, 于国浩, 张宝顺. 1000 V p-GaN混合阳极AlGaN/GaN二极管. 物理学报, 2018, 67(19): 198501. doi: 10.7498/aps.67.20181208
    [4] 招瑜, 魏爱香, 刘俊. 利用温变电容特性测量发光二极管结温的研究. 物理学报, 2015, 64(11): 118501. doi: 10.7498/aps.64.118501
    [5] 王天舒, 张瑞德, 关哲, 巴柯, 俎云霄. 忆阻元件与RLC以及二极管串并联电路的特性研究. 物理学报, 2014, 63(17): 178101. doi: 10.7498/aps.63.178101
    [6] 刘建朋, 朱彦旭, 郭伟玲, 闫微微, 吴国庆. ITO退火对GaN基LED电学特性的影响. 物理学报, 2012, 61(13): 137303. doi: 10.7498/aps.61.137303
    [7] 左应红, 王建国, 范如玉. 二极管间隙距离对场致发射过程中空间电荷效应的影响. 物理学报, 2012, 61(21): 215202. doi: 10.7498/aps.61.215202
    [8] 陈依新, 沈光地, 高志远, 郭伟玲, 张光沉, 韩军, 朱彦旭. AlGaInP大功率发光二极管发光效率与结温的关系. 物理学报, 2011, 60(8): 087206. doi: 10.7498/aps.60.087206
    [9] 刘景旺, 杜振辉, 李金义, 齐汝宾, 徐可欣. DFB激光二极管电流-温度调谐特性的解析模型. 物理学报, 2011, 60(7): 074213. doi: 10.7498/aps.60.074213
    [10] 王秀梅, 何济洲, 何弦, 肖宇玲. 非线性二极管系统构成的不可逆热机性能特征分析. 物理学报, 2010, 59(7): 4460-4465. doi: 10.7498/aps.59.4460
    [11] 李炳乾, 刘玉华, 冯玉春. 大功率GaN基发光二极管等效串联电阻的功率耗散及其对发光效率的影响. 物理学报, 2008, 57(1): 477-481. doi: 10.7498/aps.57.477
    [12] 翁 坚, 肖尚锋, 陈双宏, 戴松元. 大面积染料敏化太阳电池的实验研究. 物理学报, 2007, 56(6): 3602-3606. doi: 10.7498/aps.56.3602
    [13] 张永辉, 常安碧, 向 飞, 宋法伦, 康 强, 罗 敏, 李名加, 龚胜刚. 电功率20 GW重复频率强流电子束二极管研究. 物理学报, 2007, 56(10): 5754-5757. doi: 10.7498/aps.56.5754
    [14] 张永辉, 马乔生, 向 飞, 甘延青, 常安碧, 刘 忠, 周传明. 重复脉冲强流电子束传输技术研究. 物理学报, 2005, 54(7): 3111-3115. doi: 10.7498/aps.54.3111
    [15] 刘 鲁, 范广涵, 廖常俊, 曹明德, 陈贵楚, 陈练辉. AlGaInP四元系材料渐变异质结及其在高亮度发光二级管器件中的应用. 物理学报, 2003, 52(5): 1264-1271. doi: 10.7498/aps.52.1264
    [16] 吕红亮, 张义门, 张玉明. 4H-SiC pn结型二极管击穿特性中隧穿效应影响的模拟研究. 物理学报, 2003, 52(10): 2541-2546. doi: 10.7498/aps.52.2541
    [17] 李宏伟, 王太宏. InAs自组装量子点GaAs肖特基二极管中的电流输运特性. 物理学报, 2001, 50(2): 262-267. doi: 10.7498/aps.50.262
    [18] 徐元华. 隧道二极管伏安曲线二次微商与直流偏压关系的测量. 物理学报, 1964, 20(9): 919-927. doi: 10.7498/aps.20.919
    [19] 续競存, 卓济苍. 台式扩散参量二极管的串联电阻及截止频率. 物理学报, 1964, 20(4): 327-336. doi: 10.7498/aps.20.327
    [20] 续競存, 卓济苍. 双扩散参量二极管的串联电阻及截止频率. 物理学报, 1964, 20(6): 540-549. doi: 10.7498/aps.20.540
计量
  • 文章访问数:  4542
  • PDF下载量:  170
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-02-01
  • 修回日期:  2015-04-27
  • 刊出日期:  2015-09-05

/

返回文章
返回