搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用扫描透射X射线显微镜观测磁涡旋结构

孙璐 火炎 周超 梁建辉 张祥志 许子健 王勇 吴义政

引用本文:
Citation:

利用扫描透射X射线显微镜观测磁涡旋结构

孙璐, 火炎, 周超, 梁建辉, 张祥志, 许子健, 王勇, 吴义政

STXM observation and quantitative study of magnetic vortex structure

Sun Lu, Huo Yan, Zhou Chao, Liang Jian-Hui, Zhang Xiang-Zhi, Xu Zi-Jian, Wang Yong, Wu Yi-Zheng
PDF
导出引用
  • 利用上海光源软X射线谱学显微光束线站(STXM)并结合X射线的磁圆二色效应, 我们对方形、圆形和三角形的Ni80Fe20薄膜微结构中的磁涡旋结构进行了定量实验观测, 并利用同步辐射光源的元素分辨特性, 分别在Fe和Ni的L3吸收边对涡旋磁结构进行了观测. 我们还对磁涡旋中磁矩的分布进行了定量分析, 发现实验结果与微磁学模拟结果完全符合.
    Magnetic recording has now played an important role in the development of non-volatile information storage technologies, so it becomes essential to quantitatively understand the magnetization distribution in magnetic microstructures. In ferromagnetic disks, squares and triangles with submicron sizes, it is energetically favorable for the magnetization to form a closed in-plane vortex and a perpendicular vortex core at the center. This vortex magnetic structure is a new candidate for future magnetic memory device because both the vortex chirality and the core polarity can be manipulated by applying an external magnetic field or a spin-polarized current. Further development of vortex-based memory devices requires quantitative measurement of vortex domain structures, which is still lacking.In this paper, magnetization configuration in a vortex structure has been quantitatively studied by scanning transmission X-ray microscope (STXM) utilizing X-ray magnetic circular dichroism (XMCD) effect in Shanghai Synchrotron Radiation Facility. Samples have been fabricated on the 100 nm silicon-nitride membranes. The patterns are first transferred to PMMA photoresist using e-beam lithography, then a 50 nm thick Ni80Fe20 film is deposited by e-beam evaporation. Magnetic vortex configurations are characterized with the X-ray energy at Fe L3 absorption edge and Ni L3 absorption edge, respectively. The image taken at Fe edge shows greater contrast than that at Ni edge. Experimental results indicate that the magnetic vortex state remains stable in permalloy circle, square and triangle structures with diameters from 2 to 5 m. The STXM images indicate that the magnetization in circular geometry changes continuously along the concentric circles without clear domain boundaries. In contrast, magnetization in square geometry consists of four distinct domains with clear diagonal domain boundaries. Similarly, three domains can be observed in triangle geometry. In order to quantify the in-plane magnetization configuration in magnetic vortices, we also use micromagnetic simulation to calculate the magnetization distributions of these three geometries. By extracting Mx along the circular profiles in both experimental and simulated vortex images, we find that the experimental magnetic profiles in the STXM images are consistent with the simulation data quantitatively. These magnetic structures are also studied by magnetic force microscopy (MFM). Since MFM is only sensitive to the dipolar magnetic field around the domain boundary, the MFM images show different configurations from the STXM images.
      通信作者: 吴义政, wuyizheng@fudan.edu.cn
    • 基金项目: 国家重点基础研究发展计划(批准号: 2015CB921401)和国家自然科学基金(批准号: 11474066)资助的课题.
      Corresponding author: Wu Yi-Zheng, wuyizheng@fudan.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2015CB921401) and the National Natural Science Foundation of China (Grant No. 11474066).
    [1]

    Eisenmenger J Schuller I K 2003 Nat. Mater. 2 437

    [2]

    Skumryev V, Stoyanoc S, Zhang Y, Hadjipanayis G, Givord D, Mogues J 2003 Nature 423 850

    [3]

    Weller D, Doerner M F 2000 Annu. Rev. Mater. Sci. 30 611

    [4]

    Terris B D, Thomson T 2005 J. Phys. D: Appl. Phys. 38 R199

    [5]

    Castano F J, Hao Y, Hwang M, Ross C A, Vogeli B, Smith H I, Haratani S 2001 Appl. Phys. Lett. 79 1504

    [6]

    Demokritov S O, Hillebrands B, Slavin A N 2001 Phys. Rep. 348 441

    [7]

    Shinjo T, Okuno T, Hassdorf R, Shigeto K, One T 2000 Science 289 930

    [8]

    Chou S Y 1997 Proc IEEE 85 652

    [9]

    Onomura A 1987 Rev Mod Phys 59 639

    [10]

    Wachowiak A, Wiebe J, Bode M, Pietzsch O, Morgenstern M, Wiesendanger R 2002 Science 298 577

    [11]

    Pulwey R, Rahm M, Biberger J, Weiss D 2001 IEEE Trans. Magn 37 2076

    [12]

    Choe S B 2004 Science 304 420

    [13]

    Guslienko K Y, Lee K S, Kim S K 2008 Phys. Rev. Lett. 100 027203

    [14]

    Shibata J, Nakatani Y, Tatara G, Kohno H, Otani Y 2006 Phys. Rev. B 73 020403

    [15]

    Yamada K, Kasai S, Nakatani Y, Kobayashi K, Kohno H, Thiavelle A, Ono T 2007 Nat. Mater. 6 269

    [16]

    Bolte M, Meier G, Kruger B, Drews A, Elselt R, Bocklage L, Bohlens S Tyliszczak T, Vansteenkiste A, Van Waeyenberge B Chou K W, Puzic A, Stoll H 2008 Phys. Rev. Lett. 100 176601

    [17]

    Yamada K, Kasai S, Nakatani Y, Kobayashi K, Ono T 2008 Appl. Phys. Lett. 93 152502

    [18]

    Yu X Z, Onose Y, Kanazawa N, Park J H, Han J H, Matsui Y, Nagaosa N, Tokura Y 2010 Nature 465 901

    [19]

    Kanazawa N, Onose Y, Arima T, Okuyama D, Ohoyama K, Wakimoto S, Kakurai K, Ishiwata S, Tokura Y 2011 Phys. Rev. Lett. 106 156603

    [20]

    Im M Y, Fischer P, Yamada K, Sato T, Kasai S, Nakatani Y, Ono T 2012 Nat. Commun. 3 983

    [21]

    Butenko A B, Leonov A A, Bogdanov A N, Rossler U K 2009 Phys. Rev. B 80 134410

    [22]

    Rohart S, Thiaville A 2013 Phys. Rev. B 88 184422

    [23]

    Luo Y M, Zhou C, Won C, Wu Y Z 2015 J. Appl. Phys. 117 163916

    [24]

    Wu Y Z 2010 Phisics 39 406 (in Chinese) [吴义政 2010 物理 39 406]

    [25]

    Smith N V, Chen C T, Sette F, Mattheiss L F 1992 Phys. Rev. B 46 1023

    [26]

    Zhang X Z, Xu Z J, Zhen X J, Wang Y, Guo Z, Yan R, Chang R, Zhou R R, Tai R Z 2010 Acta Phys. Sin. 59 4535(in Chinese) [张祥志, 许子健, 甄香君, 王勇, 郭智, 严睿, 常睿, 周冉冉, 邰仁忠 2010 物理学报 59 4535]

    [27]

    Brown J, William Fuller 1963 Micromagnetics (New York Interscience Publishers)

    [28]

    Landau L D, Lifshitz E M 1935 Phys. Z. Sowietunion 8 153

  • [1]

    Eisenmenger J Schuller I K 2003 Nat. Mater. 2 437

    [2]

    Skumryev V, Stoyanoc S, Zhang Y, Hadjipanayis G, Givord D, Mogues J 2003 Nature 423 850

    [3]

    Weller D, Doerner M F 2000 Annu. Rev. Mater. Sci. 30 611

    [4]

    Terris B D, Thomson T 2005 J. Phys. D: Appl. Phys. 38 R199

    [5]

    Castano F J, Hao Y, Hwang M, Ross C A, Vogeli B, Smith H I, Haratani S 2001 Appl. Phys. Lett. 79 1504

    [6]

    Demokritov S O, Hillebrands B, Slavin A N 2001 Phys. Rep. 348 441

    [7]

    Shinjo T, Okuno T, Hassdorf R, Shigeto K, One T 2000 Science 289 930

    [8]

    Chou S Y 1997 Proc IEEE 85 652

    [9]

    Onomura A 1987 Rev Mod Phys 59 639

    [10]

    Wachowiak A, Wiebe J, Bode M, Pietzsch O, Morgenstern M, Wiesendanger R 2002 Science 298 577

    [11]

    Pulwey R, Rahm M, Biberger J, Weiss D 2001 IEEE Trans. Magn 37 2076

    [12]

    Choe S B 2004 Science 304 420

    [13]

    Guslienko K Y, Lee K S, Kim S K 2008 Phys. Rev. Lett. 100 027203

    [14]

    Shibata J, Nakatani Y, Tatara G, Kohno H, Otani Y 2006 Phys. Rev. B 73 020403

    [15]

    Yamada K, Kasai S, Nakatani Y, Kobayashi K, Kohno H, Thiavelle A, Ono T 2007 Nat. Mater. 6 269

    [16]

    Bolte M, Meier G, Kruger B, Drews A, Elselt R, Bocklage L, Bohlens S Tyliszczak T, Vansteenkiste A, Van Waeyenberge B Chou K W, Puzic A, Stoll H 2008 Phys. Rev. Lett. 100 176601

    [17]

    Yamada K, Kasai S, Nakatani Y, Kobayashi K, Ono T 2008 Appl. Phys. Lett. 93 152502

    [18]

    Yu X Z, Onose Y, Kanazawa N, Park J H, Han J H, Matsui Y, Nagaosa N, Tokura Y 2010 Nature 465 901

    [19]

    Kanazawa N, Onose Y, Arima T, Okuyama D, Ohoyama K, Wakimoto S, Kakurai K, Ishiwata S, Tokura Y 2011 Phys. Rev. Lett. 106 156603

    [20]

    Im M Y, Fischer P, Yamada K, Sato T, Kasai S, Nakatani Y, Ono T 2012 Nat. Commun. 3 983

    [21]

    Butenko A B, Leonov A A, Bogdanov A N, Rossler U K 2009 Phys. Rev. B 80 134410

    [22]

    Rohart S, Thiaville A 2013 Phys. Rev. B 88 184422

    [23]

    Luo Y M, Zhou C, Won C, Wu Y Z 2015 J. Appl. Phys. 117 163916

    [24]

    Wu Y Z 2010 Phisics 39 406 (in Chinese) [吴义政 2010 物理 39 406]

    [25]

    Smith N V, Chen C T, Sette F, Mattheiss L F 1992 Phys. Rev. B 46 1023

    [26]

    Zhang X Z, Xu Z J, Zhen X J, Wang Y, Guo Z, Yan R, Chang R, Zhou R R, Tai R Z 2010 Acta Phys. Sin. 59 4535(in Chinese) [张祥志, 许子健, 甄香君, 王勇, 郭智, 严睿, 常睿, 周冉冉, 邰仁忠 2010 物理学报 59 4535]

    [27]

    Brown J, William Fuller 1963 Micromagnetics (New York Interscience Publishers)

    [28]

    Landau L D, Lifshitz E M 1935 Phys. Z. Sowietunion 8 153

  • [1] 张建强, 秦彦军, 方峥, 范晓珍, 杨慧雅, 邝富丽, 翟耀, 苗艳龙, 赵梓翔, 何佳俊, 叶慧群, 方允樟. Fe基合金应力感生不可逆磁各向异性机理. 物理学报, 2022, 71(24): 247501. doi: 10.7498/aps.71.20221509
    [2] 强进, 何开宙, 刘东妮, 卢启海, 韩根亮, 宋玉哲, 王向谦. 三角形结构中磁涡旋自旋波模式的研究. 物理学报, 2022, 71(19): 194703. doi: 10.7498/aps.71.20221128
    [3] 马晓萍, 杨宏国, 李昌锋, 刘有继, 朴红光. 切边纳米铁磁盘对中磁涡旋旋性的磁场调控. 物理学报, 2021, 70(10): 107502. doi: 10.7498/aps.70.20201995
    [4] 李栋, 董生智, 李磊, 徐吉元, 陈红升, 李卫. 核((Nd0.7, Ce0.3)2Fe14B)-壳(Nd2Fe14B)型磁体反磁化的微磁学模拟. 物理学报, 2020, 69(14): 147501. doi: 10.7498/aps.69.20200435
    [5] 徐桂舟, 徐展, 丁贝, 侯志鹏, 王文洪, 徐锋. 磁畴壁手性和磁斯格明子的拓扑性表征及其调控. 物理学报, 2018, 67(13): 137508. doi: 10.7498/aps.67.20180513
    [6] 董丹娜, 蔡理, 李成, 刘保军, 李闯, 刘嘉豪. 界面Dzyaloshinskii-Moriya相互作用下辐射状磁涡旋形成机制. 物理学报, 2018, 67(22): 228502. doi: 10.7498/aps.67.20181392
    [7] 金晨东, 宋承昆, 王金帅, 王建波, 刘青芳. 磁斯格明子的微磁学研究进展和应用. 物理学报, 2018, 67(13): 137504. doi: 10.7498/aps.67.20180165
    [8] 李晓东, 李晖, 李鹏善. 同步辐射高压单晶衍射实验技术. 物理学报, 2017, 66(3): 036203. doi: 10.7498/aps.66.036203
    [9] 吕刚, 曹学成, 张红, 秦羽丰, 王林辉, 厉桂华, 高峰, 孙丰伟. 磁涡旋极性翻转的局域能量. 物理学报, 2016, 65(21): 217503. doi: 10.7498/aps.65.217503
    [10] 孙明娟, 刘要稳. 电流调控磁涡旋的极性和旋性. 物理学报, 2015, 64(24): 247505. doi: 10.7498/aps.64.247505
    [11] 吕刚, 曹学成, 秦羽丰, 王林辉, 厉桂华, 高峰, 孙丰伟, 张红. 椭圆纳米盘中磁涡旋结构的方位角自旋波模式. 物理学报, 2015, 64(21): 217501. doi: 10.7498/aps.64.217501
    [12] 彭懿, 赵国平, 吴绍全, 斯文静, 万秀琳. 不同易轴取向下对Nd2Fe14B/Fe65Co35磁性双层膜的微磁学模拟. 物理学报, 2014, 63(16): 167505. doi: 10.7498/aps.63.167505
    [13] 夏静, 张溪超, 赵国平. 易轴取向对Nd2Fe14B/α-Fe双层膜退磁过程影响的微磁学分析. 物理学报, 2013, 62(22): 227502. doi: 10.7498/aps.62.227502
    [14] 范喆, 马晓萍, 李尚赫, 沈帝虎, 朴红光, 金东炫. 消磁场对纳米铁磁线磁畴壁动力学行为的影响. 物理学报, 2012, 61(10): 107502. doi: 10.7498/aps.61.107502
    [15] 闫芬, 张继超, 李爱国, 杨科, 王华, 毛成文, 梁东旭, 闫帅, 李炯, 余笑寒. 基于同步辐射的快速扫描X射线微束荧光成像方法. 物理学报, 2011, 60(9): 090702. doi: 10.7498/aps.60.090702
    [16] 陆海鹏, 韩满贵, 邓龙江, 梁迪飞, 欧雨. Co纳米线磁矩反转动态过程的有限元微磁学模拟. 物理学报, 2010, 59(3): 2090-2096. doi: 10.7498/aps.59.2090
    [17] 宋三元, 郭光华, 张光富, 宋文斌. 矩形磁性纳米点动力学反磁化过程的微磁学研究. 物理学报, 2009, 58(8): 5757-5762. doi: 10.7498/aps.58.5757
    [18] 马丽, 朱志永, 李敏, 于世丹, 崔启良, 周强, 陈京兰, 吴光恒. 铁磁形状记忆合金Mn2NiGa中应力诱发马氏体相的结构和磁性. 物理学报, 2009, 58(5): 3479-3484. doi: 10.7498/aps.58.3479
    [19] 杨秀会. W(110)基底上的铁纳米岛初始自发磁化态的微磁学模拟. 物理学报, 2008, 57(11): 7279-7286. doi: 10.7498/aps.57.7279
    [20] 阴津华, C. H. Hee, 潘礼庆. 反铁磁耦合记录介质的一级翻转曲线. 物理学报, 2008, 57(11): 7287-7291. doi: 10.7498/aps.57.7287
计量
  • 文章访问数:  6000
  • PDF下载量:  255
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-04-15
  • 修回日期:  2015-06-05
  • 刊出日期:  2015-10-05

/

返回文章
返回